817 resultados para Memetic algorithm
Resumo:
The GLAaS algorithm for pretreatment intensity modulation radiation therapy absolute dose verification based on the use of amorphous silicon detectors, as described in Nicolini et al. [G. Nicolini, A. Fogliata, E. Vanetti, A. Clivio, and L. Cozzi, Med. Phys. 33, 2839-2851 (2006)], was tested under a variety of experimental conditions to investigate its robustness, the possibility of using it in different clinics and its performance. GLAaS was therefore tested on a low-energy Varian Clinac (6 MV) equipped with an amorphous silicon Portal Vision PV-aS500 with electronic readout IAS2 and on a high-energy Clinac (6 and 15 MV) equipped with a PV-aS1000 and IAS3 electronics. Tests were performed for three calibration conditions: A: adding buildup on the top of the cassette such that SDD-SSD = d(max) and comparing measurements with corresponding doses computed at d(max), B: without adding any buildup on the top of the cassette and considering only the intrinsic water-equivalent thickness of the electronic portal imaging devices device (0.8 cm), and C: without adding any buildup on the top of the cassette but comparing measurements against doses computed at d(max). This procedure is similar to that usually applied when in vivo dosimetry is performed with solid state diodes without sufficient buildup material. Quantitatively, the gamma index (gamma), as described by Low et al. [D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656-660 (1998)], was assessed. The gamma index was computed for a distance to agreement (DTA) of 3 mm. The dose difference deltaD was considered as 2%, 3%, and 4%. As a measure of the quality of results, the fraction of field area with gamma larger than 1 (%FA) was scored. Results over a set of 50 test samples (including fields from head and neck, breast, prostate, anal canal, and brain cases) and from the long-term routine usage, demonstrated the robustness and stability of GLAaS. In general, the mean values of %FA remain below 3% for deltaD equal or larger than 3%, while they are slightly larger for deltaD = 2% with %FA in the range from 3% to 8%. Since its introduction in routine practice, 1453 fields have been verified with GLAaS at the authors' institute (6 MV beam). Using a DTA of 3 mm and a deltaD of 4% the authors obtained %FA = 0.9 +/- 1.1 for the entire data set while, stratifying according to the dose calculation algorithm, they observed: %FA = 0.7 +/- 0.9 for fields computed with the analytical anisotropic algorithm and %FA = 2.4 +/- 1.3 for pencil-beam based fields with a statistically significant difference between the two groups. If data are stratified according to field splitting, they observed %FA = 0.8 +/- 1.0 for split fields and 1.0 +/- 1.2 for nonsplit fields without any significant difference.
Resumo:
An important problem in computational biology is finding the longest common subsequence (LCS) of two nucleotide sequences. This paper examines the correctness and performance of a recently proposed parallel LCS algorithm that uses successor tables and pruning rules to construct a list of sets from which an LCS can be easily reconstructed. Counterexamples are given for two pruning rules that were given with the original algorithm. Because of these errors, performance measurements originally reported cannot be validated. The work presented here shows that speedup can be reliably achieved by an implementation in Unified Parallel C that runs on an Infiniband cluster. This performance is partly facilitated by exploiting the software cache of the MuPC runtime system. In addition, this implementation achieved speedup without bulk memory copy operations and the associated programming complexity of message passing.
Resumo:
Linear programs, or LPs, are often used in optimization problems, such as improving manufacturing efficiency of maximizing the yield from limited resources. The most common method for solving LPs is the Simplex Method, which will yield a solution, if one exists, but over the real numbers. From a purely numerical standpoint, it will be an optimal solution, but quite often we desire an optimal integer solution. A linear program in which the variables are also constrained to be integers is called an integer linear program or ILP. It is the focus of this report to present a parallel algorithm for solving ILPs. We discuss a serial algorithm using a breadth-first branch-and-bound search to check the feasible solution space, and then extend it into a parallel algorithm using a client-server model. In the parallel mode, the search may not be truly breadth-first, depending on the solution time for each node in the solution tree. Our search takes advantage of pruning, often resulting in super-linear improvements in solution time. Finally, we present results from sample ILPs, describe a few modifications to enhance the algorithm and improve solution time, and offer suggestions for future work.
Resumo:
Users of cochlear implant systems, that is, of auditory aids which stimulate the auditory nerve at the cochlea electrically, often complain about poor speech understanding in noisy environments. Despite the proven advantages of multimicrophone directional noise reduction systems for conventional hearing aids, only one major manufacturer has so far implemented such a system in a product, presumably because of the added power consumption and size. We present a physically small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. Supporting algorithms, which allow the adjustment of the opening angle and the maximum noise suppression, are proposed and evaluated. A portable real-time device for test in real acoustic environments is presented.
Resumo:
This dissertation discusses structural-electrostatic modeling techniques, genetic algorithm based optimization and control design for electrostatic micro devices. First, an alternative modeling technique, the interpolated force model, for electrostatic micro devices is discussed. The method provides improved computational efficiency relative to a benchmark model, as well as improved accuracy for irregular electrode configurations relative to a common approximate model, the parallel plate approximation model. For the configuration most similar to two parallel plates, expected to be the best case scenario for the approximate model, both the parallel plate approximation model and the interpolated force model maintained less than 2.2% error in static deflection compared to the benchmark model. For the configuration expected to be the worst case scenario for the parallel plate approximation model, the interpolated force model maintained less than 2.9% error in static deflection while the parallel plate approximation model is incapable of handling the configuration. Second, genetic algorithm based optimization is shown to improve the design of an electrostatic micro sensor. The design space is enlarged from published design spaces to include the configuration of both sensing and actuation electrodes, material distribution, actuation voltage and other geometric dimensions. For a small population, the design was improved by approximately a factor of 6 over 15 generations to a fitness value of 3.2 fF. For a larger population seeded with the best configurations of the previous optimization, the design was improved by another 7% in 5 generations to a fitness value of 3.0 fF. Third, a learning control algorithm is presented that reduces the closing time of a radiofrequency microelectromechanical systems switch by minimizing bounce while maintaining robustness to fabrication variability. Electrostatic actuation of the plate causes pull-in with high impact velocities, which are difficult to control due to parameter variations from part to part. A single degree-of-freedom model was utilized to design a learning control algorithm that shapes the actuation voltage based on the open/closed state of the switch. Experiments on 3 test switches show that after 5-10 iterations, the learning algorithm lands the switch with an impact velocity not exceeding 0.2 m/s, eliminating bounce.
Resumo:
FEAST is a recently developed eigenvalue algorithm which computes selected interior eigenvalues of real symmetric matrices. It uses contour integral resolvent based projections. A weakness is that the existing algorithm relies on accurate reasoned estimates of the number of eigenvalues within the contour. Examining the singular values of the projections on moderately-sized, randomly-generated test problems motivates orthogonalization-based improvements to the algorithm. The singular value distributions provide experimentally robust estimates of the number of eigenvalues within the contour. The algorithm is modified to handle both Hermitian and general complex matrices. The original algorithm (based on circular contours and Gauss-Legendre quadrature) is extended to contours and quadrature schemes that are recursively subdividable. A general complex recursive algorithm is implemented on rectangular and diamond contours. The accuracy of different quadrature schemes for various contours is investigated.
Resumo:
Heuristic optimization algorithms are of great importance for reaching solutions to various real world problems. These algorithms have a wide range of applications such as cost reduction, artificial intelligence, and medicine. By the term cost, one could imply that that cost is associated with, for instance, the value of a function of several independent variables. Often, when dealing with engineering problems, we want to minimize the value of a function in order to achieve an optimum, or to maximize another parameter which increases with a decrease in the cost (the value of this function). The heuristic cost reduction algorithms work by finding the optimum values of the independent variables for which the value of the function (the “cost”) is the minimum. There is an abundance of heuristic cost reduction algorithms to choose from. We will start with a discussion of various optimization algorithms such as Memetic algorithms, force-directed placement, and evolution-based algorithms. Following this initial discussion, we will take up the working of three algorithms and implement the same in MATLAB. The focus of this report is to provide detailed information on the working of three different heuristic optimization algorithms, and conclude with a comparative study on the performance of these algorithms when implemented in MATLAB. In this report, the three algorithms we will take in to consideration will be the non-adaptive simulated annealing algorithm, the adaptive simulated annealing algorithm, and random restart hill climbing algorithm. The algorithms are heuristic in nature, that is, the solution these achieve may not be the best of all the solutions but provide a means to reach a quick solution that may be a reasonably good solution without taking an indefinite time to implement.
Resumo:
Abstract Radiation metabolomics employing mass spectral technologies represents a plausible means of high-throughput minimally invasive radiation biodosimetry. A simplified metabolomics protocol is described that employs ubiquitous gas chromatography-mass spectrometry and open source software including random forests machine learning algorithm to uncover latent biomarkers of 3 Gy gamma radiation in rats. Urine was collected from six male Wistar rats and six sham-irradiated controls for 7 days, 4 prior to irradiation and 3 after irradiation. Water and food consumption, urine volume, body weight, and sodium, potassium, calcium, chloride, phosphate and urea excretion showed major effects from exposure to gamma radiation. The metabolomics protocol uncovered several urinary metabolites that were significantly up-regulated (glyoxylate, threonate, thymine, uracil, p-cresol) and down-regulated (citrate, 2-oxoglutarate, adipate, pimelate, suberate, azelaate) as a result of radiation exposure. Thymine and uracil were shown to derive largely from thymidine and 2'-deoxyuridine, which are known radiation biomarkers in the mouse. The radiation metabolomic phenotype in rats appeared to derive from oxidative stress and effects on kidney function. Gas chromatography-mass spectrometry is a promising platform on which to develop the field of radiation metabolomics further and to assist in the design of instrumentation for use in detecting biological consequences of environmental radiation release.
Resumo:
BACKGROUND: Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. METHODS: ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. RESULTS: For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). CONCLUSIONS: Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.
Resumo:
An algorithm, based on ‘vertex priority values’ has been proposed to uniquely sequence and represent connectivity matrix of chemical structures of cyclic/ acyclic functionalized achiral hydrocarbons and their derivatives. In this method ‘vertex priority values’ have been assigned in terms of atomic weights, subgraph lengths, loops, and heteroatom contents. Subsequently the terminal vertices have been considered upon completing the sequencing of the core vertices. This approach provides a multilayered connectivity graph, which can be put to use in comparing two or more structures or parts thereof for any given purpose. Furthermore the basic vertex connection tables generated here are useful in the computation of characteristic matrices/ topological indices, automorphism groups, and in storing, sorting and retrieving of chemical structures from databases.
Resumo:
This article deals with complex material flow systems and series connections of conveyor and op-erating elements. These can be characterised by a specific availability. The thus resultant overall availabil-ity of necessary “technical throughput” of the individual elements for the achievement of a specified throughput. When the conveyor and operating elements are subjected to a stochastic distribution, the interposition of buffers is necessary but these can also lead to a reduction of the necessary throughput due faults. The system behaviour of complex installations can only be investigated by simulation. The parame-ter changes required in order to achieve specific target values can also be determined by simulation runs in iteration loops.