986 resultados para Mastromarco, Giuseppe
Resumo:
We propose a bargaining process supergame over the strategies to play in a non-cooperative game. The agreement reached by players at the end of the bargaining process is the strategy profile that they will play in the original non-cooperative game. We analyze the subgame perfect equilibria of this supergame, and its implications on the original game. We discuss existence, uniqueness, and efficiency of the agreement reachable through this bargaining process. We illustrate the consequences of applying such a process to several common two-player non-cooperative games: the Prisoner’s Dilemma, the Hawk-Dove Game, the Trust Game, and the Ultimatum Game. In each of them, the proposed bargaining process gives rise to Pareto-efficient agreements that are typically different from the Nash equilibrium of the original games.
Resumo:
Climate models indicate a future wintertime precipitation reduction in the Mediterranean region but there is large uncertainty in the amplitude of the projected change. We analyse CMIP5 climate model output to quantify the role of atmospheric circulation in the Mediterranean precipitation change. It is found that a simple circulation index, i.e. the 850 hPa zonal wind (U850) in North Africa, well describes the year to year fluctuations in the area-averaged Mediterranean precipitation, with positive (i.e. westerly) U850 anomalies in North Africa being associated with positive precipitation anomalies. Under climate change, U850 in North Africa and the Mediterranean precipitation are both projected to decrease consistently with the relationship found in the inter-annual variability. This enables us to estimate that about 85% of the CMIP5 mean precipitation response and 80% of the variance in the inter-model spread are related to changes in the atmospheric circulation. In contrast, there is no significant correlation between the mean precipitation response and the global-mean surface warming across the models. It follows that the uncertainty in cold-season Mediterranean precipitation projection will not be narrowed unless the uncertainty in the atmospheric circulation response is reduced.
Resumo:
Offsite pesticide losses in tropical mountainous regions have been little studied. One example is measuring pesticide drift soil deposition, which can support pesticide risk assessment for surface water, soil, bystanders, off target plants and fauna. This is considered a serious gap, given the evidence of pesticide-related poisoning in those regions. Empirical data of drift deposition of a pesticide surrogate, Uranine tracer, within one of the highest potato producing regions in Colombia, characterized by small plots and mountain orography, is presented. High drift values encountered in our study reflect the actual spray conditions using handled knapsack sprayers. Comparison between measured and predicted drift values using three existing empirical equations showed important underestimation. However, after their optimization based on measured drift information, the equations showed a strong predictive power for this study area and the study conditions. The most suitable curve to assess mean relative drift was the IMAG calculator after optimization.
Resumo:
Little research so far has been devoted to understanding the diffusion of grassroots innovation for sustainability across space. This paper explores and compares the spatial diffusion of two networks of grassroots innovations, the Transition Towns Network (TTN) and Gruppi di Acquisto Solidale (Solidarity Purchasing Groups – GAS), in Great Britain and Italy. Spatio-temporal diffusion data were mined from available datasets, and patterns of diffusion were uncovered through an exploratory data analysis. The analysis shows that GAS and TTN diffusion in Italy and Great Britain is spatially structured, and that the spatial structure has changed over time. TTN has diffused differently in Great Britain and Italy, while GAS and TTN have diffused similarly in central Italy. The uneven diffusion of these grassroots networks on the one hand challenges current narratives on the momentum of grassroots innovations, but on the other highlights important issues in the geography of grassroots innovations for sustainability, such as cross-movement transfers and collaborations, institutional thickness, and interplay of different proximities in grassroots innovation diffusion.
Resumo:
How is the notion of public interest operationalised in the regulatory practices of the International Public Sector Accounting Standards Board (IPSASB)? A fundamental objective in setting international accounting standards for both the private and public sector is to serve the ‘public interest’. Who or what constitutes ‘public interest’ however remains a highly complex and controversial issue. Private sector financial reporting research posits that users (of financial information) are used as a proxy for the ‘public’ and users are further refined to current and potential investors - a small proportion of the public. The debates surrounding public interest are even more contentious in public sector financial reporting which deals with ‘public’ (tax payers’) money. In our study we use Bourdieu’s notion of semi-homogenous fields to show how autonomous and heteronomous pressures from the epistemic community of the accounting profession and political/government interests compete for the right to define the public interest and determine how (by what accounting solutions) this interest is best served. This is a theoretical study grounded in the analysis of empirical data from interviews with the board members of the IPSASB. The main contribution of the paper is to further our understanding of the perceptions of the main decision makers from the ‘inner regulatory circle’ with regards to the problematic construct of public interest. The main findings suggest a paternal and un-reflexive attitude of the board members leading to the conclusion that the public have no real voice in these matters.
Resumo:
Little information exists on the effects of ensiling on condensed tannins or proanthocyanidins. The acetone–butanol–HCl assay is suitable for measuring proanthocyanidin contents in a wide range of samples, silages included, but provides limited information on proanthocyanidin composition, which is of interest for deciphering the relationships between tannins and their bioactivities in terms of animal nutrition or health. Degradation with benzyl mercaptan (thiolysis) provides information on proanthocyanidin composition, but proanthocyanidins in several sainfoin silages have proved resistant to thiolysis. We now report that a pretreatment step with sodium hydroxide prior to thiolysis was needed to enable their analysis. This alkaline treatment increased their extractability from ensiled sainfoin and facilitated especially the release of larger proanthocyanidins. Ensiling reduced assayable proanthocyanidins by 29%, but the composition of the remaining proanthocyanidins in silage resembled that of the fresh plants.
Resumo:
The General Election for the 56th United Kingdom Parliament was held on 7 May 2015. Tweets related to UK politics, not only those with the specific hashtag ”#GE2015”, have been collected in the period between March 1 and May 31, 2015. The resulting dataset contains over 28 million tweets for a total of 118 GB in uncompressed format or 15 GB in compressed format. This study describes the method that was used to collect the tweets and presents some analysis, including a political sentiment index, and outlines interesting research directions on Big Social Data based on Twitter microblogging.
Resumo:
Among all the paradigms in economic theory, the theoretical predictions of oligopoly were the first to be examined in the laboratory. In this chapter, instead of surveying all the experiments with few sellers, we adopt a narrower definition of the term “oligopoly”, and focus on the experiments that were directly inspired by the basic oligopolistic models of Cournot, Bertrand, Hotelling, Stackelberg, and some extensions. Most of the experiments we consider in this chapter have been run in the last three decades. This literature can be considered as a new wave of experimental works aiming at representing basic oligopolistic markets and testing their properties. The chapter is divided into independent sections referring to different parts of the oligopolistic theory, including both monopoly as well as a number of extensions of the basic models, which have been chosen with the aim of providing a representative list of the relevant experimental findings.
Resumo:
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.
An LDA and probability-based classifier for the diagnosis of Alzheimer's Disease from structural MRI
Resumo:
In this paper a custom classification algorithm based on linear discriminant analysis and probability-based weights is implemented and applied to the hippocampus measurements of structural magnetic resonance images from healthy subjects and Alzheimer’s Disease sufferers; and then attempts to diagnose them as accurately as possible. The classifier works by classifying each measurement of a hippocampal volume as healthy controlsized or Alzheimer’s Disease-sized, these new features are then weighted and used to classify the subject as a healthy control or suffering from Alzheimer’s Disease. The preliminary results obtained reach an accuracy of 85.8% and this is a similar accuracy to state-of-the-art methods such as a Naive Bayes classifier and a Support Vector Machine. An advantage of the method proposed in this paper over the aforementioned state of the art classifiers is the descriptive ability of the classifications it produces. The descriptive model can be of great help to aid a doctor in the diagnosis of Alzheimer’s Disease, or even further the understand of how Alzheimer’s Disease affects the hippocampus.
Resumo:
Epidemic protocols are a bio-inspired communication and computation paradigm for extreme-scale network system based on randomized communication. The protocols rely on a membership service to build decentralized and random overlay topologies. In a weakly connected overlay topology, a naive mechanism of membership protocols can break the connectivity, thus impairing the accuracy of the application. This work investigates the factors in membership protocols that cause the loss of global connectivity and introduces the first topology connectivity recovery mechanism. The mechanism is integrated into the Expander Membership Protocol, which is then evaluated against other membership protocols. The analysis shows that the proposed connectivity recovery mechanism is effective in preserving topology connectivity and also helps to improve the application performance in terms of convergence speed.
Resumo:
This work investigates the problem of feature selection in neuroimaging features from structural MRI brain images for the classification of subjects as healthy controls, suffering from Mild Cognitive Impairment or Alzheimer’s Disease. A Genetic Algorithm wrapper method for feature selection is adopted in conjunction with a Support Vector Machine classifier. In very large feature sets, feature selection is found to be redundant as the accuracy is often worsened when compared to an Support Vector Machine with no feature selection. However, when just the hippocampal subfields are used, feature selection shows a significant improvement of the classification accuracy. Three-class Support Vector Machines and two-class Support Vector Machines combined with weighted voting are also compared with the former and found more useful. The highest accuracy achieved at classifying the test data was 65.5% using a genetic algorithm for feature selection with a three-class Support Vector Machine classifier.