972 resultados para Marine fishes
Resumo:
The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 134 pages.)
Resumo:
Information on the biology and fisheries of cobia, Rachycentron canadum, is compiled and reviewed in the FAD species synopsis style. Topics include taxonomy, morphology, distribution, reproduction, pre-adult and adult stages, food, growth, migration, population characteristics, and various aspects of exploitation. Data and information were obtained from unpublished as well as published sources. Cobia, the only species in the family Rachycentridae, is a migratory pelagic fish that occurs in tropical and subtropical seas of the world, except in the central and eastern Pacific Ocean. In the western Atlantic Ocean, spawning occurs during the warm months. Eggs and larvae are planktonic. Females grow faster than males: at 1 year, females are 36 cm FL and 0.4 kg; at 4 years, 99 cm and 11 kg; and at 8 years, 137 cm and 31 kg. Comparable data for males are: at 1 year, 31 cm and 0.3 kg; 4 years, 82 cm and 6 kg; and 8 years, 108 cm and 15 kg. Sexual maturity is attained by males at about 52 cm FL in their second year and by females at about 70 cm in their third year. Fecundity for females 100-125 cm FL varies from 1.9 to 5.4 million eggs. Cobia favor crustaceans for food, but will feed on other invertebrates and fishes as well. They attain a maximum size of over 60 kg. Cobia are fished both commercially and recreationally. Commercially, they are usually caught incidentally in both hook-and-Iine and net fISheries. In the United States, which ranks behind Pakistan, Mexico, and the Philippines in commercial production of cobia, recreational landings exceed commercial landings by more than ten-fold. (PDF file contains 32 pages.)
Resumo:
A pictorial key to US genera of free-living marine nematodes in the order Enoplida is presented. Specific morphological and anatomical features are iUustrated to facilitate use of the key. The purpose of this work is to provide a single key to the genera of enoplid nematodes to facilitate identification of these organisms by nematologists and marine biologists working with meiofauna. (PDF file contains 32 pages.)
Resumo:
This study examined the efficiency of fish diversion and survivorship of diverted fishes in the San Onofre Nuclear Generating Station Fish Return System in 1984 and 1985. Generally, fishes were diverted back to the ocean with high frequency, particularly in 1984. Most species were diverted at rates of 80% or more. Over 90% of the most abundant species, Engraulis mordax, were diverted. The system worked particularly well for strong-swimming forms such as Paralobrax clothratus, Atherinopsis californiensis, and Xenistius californiensis, and did not appreciably divert weaker-swimming species such as Porichthys notatus, Heterostichus rostratus, and Syngnathus sp. Return rates of some species were not as high in 1985 as in 1984. Individuals of most tested species survived both transit through the fish return system and 96 hours in a holding net. Some species, such as E. mordox, X. californiensis, and Umbrina roncador, experienced tittle or no mortality. Survivorship of Seriphus politus was highly variable and no Anchoa delicatissima survived. (PDF file contains 22 pages.)
Resumo:
The cephalopods found in neritic waters of the northeastern United States include myopsid and oegopsid squids, sepiolid squids, and octopods. A key with diagnostic illustrations is provided to aid in identification of the eleven species common in the neritic waters between Cape Hatteras and Nova Scotia; included also is information on two oceanic species that occur over the continental shelf in this area and that can be confused with similar-looking neritic species. Other sections comprise a glossary of taxonomic characters used for identification of these species, an annotated systematic checklist, and checklists of the 89 other oceanic species and 18 Carolinian and subtropical neritic species that might occur occasionally off the northeastern United States. (PDF file contains 30 pages.)
Resumo:
Each year, more than 500 motorized vessel groundings cause widespread damage to seagrasses in Florida Keys National Marine Sanctuary (FKNMS). Under Section 312 of the National Marine Sanctuaries Act (NMSA), any party responsible for the loss, injury, or destruction of any Sanctuary resource, including seagrass, is liable to the United States for response costs and resulting damages. As part of the damage assessment process, a cellular automata model is utilized to forecast seagrass recovery rates. Field validation of these forecasts was accomplished by comparing model-predicted percent recovery to that which was observed to be occurring naturally for 30 documented vessel grounding sites. Model recovery forecasts for both Thalassia testudinum and Syringodium filiforme exceeded natural recovery estimates for 93.1% and 89.5% of the sites, respectively. For Halodule wrightii, the number of over- and under-predictions by the model was similar. However, where under-estimation occurred, it was often severe, reflecting the well-known extraordinary growth potential of this opportunistic species. These preliminary findings indicate that the recovery model is consistently generous to Responsible Parties in that the model forecasts a much faster recovery than was observed to occur naturally, particularly for T. testudinum, the dominant seagrass species in the region and the species most often affected. Environmental setting (i.e., location, wave exposure) influences local seagrass landscape pattern and may also play a role in the recovery dynamics for a particular injury site. An examination of the relationship between selected environmental factors and injury recovery dynamics is currently underway. (PDF file contains 20 pages.)
Resumo:
The food habits of 20 species of pelagic nekton were investigated from collections made with small-mesh purse seines from 1979-84 off Washington and Oregon. Four species (spiny dogfish, Squalus acanthias; soupfin shark, Galeorhinus zyopterus; blue shark, Prionace glauca; and cutthroat trout, Salmo clarki) were mainly piscivorous. Six species (coho salmon, Oncorhynchus kisutch; chinook salmon, O. tshawytscha; black rockfish, Sebastes melanops; yellowtail rockfish, S. f1avidus; sablefish, Anoplopoma fimbria; and jack mackerel, Trachurus symmetricus) consumed both nektonic and planktonic organisms. The remaining species (market squid, Loligo opalescens; American shad, Alosa sapidissima; Pacific herring, Clupea harengus pallasi; northern anchovy, Engraulis mordax; pink salmon, O. gorbuscha; surf smelt, Hypomesus pretiosus; Pacific hake, Merluccius productus; Pacific saury, Cololabis saira; Pacific mackerel, Scomber japonicus; and medusafish, Icichthys lockingtom) were primarily planktonic feeders. There were substantial interannual, seasonal, and geographic variations in the diets of several species due primarily to changes in prey availability. Juvenile salmonids were not commonly consumed by this assemblage of fishes (PDF file contains 36 pages.)
Resumo:
This atlas summarizes data on the crustaceans, molluscs, and fishes caught in a resource survey of the Northwestern Hawaiian Islands from October 1976 to September 1981. The geographical and depth distributions, size range, and the type of gear used to catch all of the crustaceans, molluscs, and fishes are tabulated. Species accounts of 37 crustaceans, molluscs, and fishes of commercial potential are presented. The geography, oceanography, and climate of the region are reviewed. (PDF file contains 38 pages.)
Resumo:
The echinoid fauna from littoral to abyssal depths off the northeastern United States (Cape Hatteras, NC, to northern Nova Scotia) comprises 31 species, in 26 genera and 19 families. An introduction to the external morphology, distribution, and natural history is given along with an illustrated key to the species, an annotated systematic list, and an index. The fauna Includes 17 species with wide-ranging distributions on continental slopes or abyssal plains. The remaining 14 species occur in shallower waters on the continental shelf or upper slope. Of these, eight are tropical in distribution with their northern range extending to the northeastern United States and three are mainly boreal with the northeastern United States at the southern limit of their range. Two species occur only off the eastern United States and one species is cosmopolitan. (PDF file contains 33 pages.)
Resumo:
The Symposium in which the communications, as they were called during the meeting, comprising this volume were presented was held at the Zoological Institute of the Academy of Sciences of the U.S.S.R. in Leningrad during 13 to 16 October 1981. Conducted as part of the cooperative program of the U.S.A.-U.S.S.R. Working Group on Biological Productivity and Biochemistry of the World Ocean, the Leningrad meeting was sponsored by the Academy of Sciences of the U.S.S.R. (the Zoological Institute) and the Ministry of Fisheries of the U.S.S.R. (The Scientific Council on Fish Diseases of the Ichthyological Commission). It was an extremely interesting and successful Symposium, offering all participants the opportunity to describe the results of their studies and reviews during the course of the formal presentations and direct interchange between scientists during breaks in the program and the organized and casual social activities. The facilities provided by the Zoological Institute were quite adequate and the assistance offered by its Director, O. A. Scarlato and his staff in organization,logistics, and translation was excellent. Several of our Soviet colleagues presided over the proceedings, as did I. All were businesslike and efficient, yet graceful and accommodating. To O. N. Bauer Jell the brunt of programmatic detail and follow-up. He bore his burdens well and, with Director Scarlato and his staff, including A. V. Gussev and others of the professional and technical staffs of the Zoological Institute, helped make our stay pleasant and the Symposium productive. These organizations and individuals deserve much credit and praise as well as the thanks of their American and British colleagues. (PDF file contains 141 pages.)
Resumo:
This bibliography contains 73 annotated references from publications and reports concerning hypoxia, .,; 2.0 ppm dissolved oxygen concentration, in the Gulf of Mexico. Instances of hypoxia from similar habitats and the effects of low oxygen levels on marine or estuarine organisms are also included. (PDF file contains 15 pages.)
Resumo:
Some 25 to 30 yr ago, when we as students were beginning our respective careers and were developing for the first time our awareness of marine mammals in the waters separating western North America from eastern Asia, we had visions of eventually bridging the communication gap which existed between our two countries at that time. Each of us was anxious to obtain information on the distribution, biology, and ecological relations of "our" seals and walruses on "the other side," beyond our respective political boundari~s where we were not permitted to go to study them. We were concerned that the resource management practices on the other side of the Bering and Chukchi Seas, implemented in isolation, on a purely unilateral basis, might endanger the species which we had come to know and were striving to conserve. At once apparent to both of us was the need for free exchange of biological information between our two countries and, ultimately, joint management of our shared resources. In a small way, we and others made some initial efforts to generate that exchange by personal correspondence and through vocal interchange at the annual meetings of the North Pacific Fur Seal Commission. By the enabling Agreement on Cooperation in the Field of Environmental Protection, reached between our two countries in 1972, our earlier visions at last came true. Since that time, within the framework of the Marine Mammal Project under Area V of that Agreement, we and our colleagues have forged a strong bond of professional accord and respect, in an atmosphere of free intercommunication and mutual understanding. The strength and utility of this arrangement from the beginning of our joint research are reflected in the reports contained in this, the first compendium of our work. The need for a series of such a compendia became apparent to us in 1976, and its implementation was agreed on by the regular meeting of the Project in La Jolla, Calif., in January 1977. Obviously, the preparation and publication of this first volume has been excessively delayed, in part by continuing political distrust between our governments but mainly by increasing demands placed on the time of the contributors. In this period of growing environmental concern in both countries, we and our colleagues have been totally immersed in other tasks and have experienced great difficulty in drawing together the works presented here. Much of the support for doing so was provided by the State of Alaska, through funding for Organized Research at the University of Alaska-Fairbanks. For its ultimate completion in publishable form we wish to thank Helen Stockholm, Director of Publications, Institute of Marine Science, University of Alaska, and her staff, especially Ruth Hand, and the numerous referees narned herein who gave willingly oftheir time to review each ofthe manuscripts critically and to provide a high measure of professionalism to the final product. (PDF file contains 110 pages.)
Resumo:
The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was started by a proposal made during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program are desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communications and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy coordinative body;' administration staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations.(PDF file contains 37 pages.)
Resumo:
Quarterly ichthyoplankton sampling was conducted at 16 estuarine and 24 inshore stations along the Florida Everglades from May 1971 to February 1972. The area is one of the most pristine along lhe Florida coast. The survey provided the first comprehensive information on seasonal occurrence, abundance (under 10 m' of surface area), and distribution of fish eggs and larvae in this area. A total of 209,462 fish eggs and 78,865 larvae was collected. Eggs were identified only as fish eggs, but among the larvae, 37 families, 47 genera, and 37 species were identified. Abundance of eggs and larvae, and diversity of larvae, were greatest in the inshore zone. The 10 most abundant fish families which together made up 90.7% of all larvae from the study area were, in descending order of abundance: Clupeidae, Engraulidae, Gobiidae, Sciaenidae, Carangidae, Pomadasyidae, Cynoglossidae, Gerreidae, Triglidae, and Soleidae. Clupeidae, Engraulidae, and Gobiidae made up 59.9% of all larvae. The inshore zone (to a depth of about 10 m) was a spawning ground and nursery for many fishes important to fisheries. The catch of small larvae (<>3.5 mm SL) indicated that most fishes identified from the 10 most abundant families spawned throughout the inshore zone at depths of <> 10 m, but Orthopristis chrysoptera, Gerreidae, and Prionotus spp. spawned at depths > 10 m, with offshore to inshore (eastward) larval transport. Salinity was one of several environmental factors that probably limited the numbers of eggs and larvae in the estuarine zone. Abundance of eggs and larvae at inshore stations was usually as great as, and sometimes greater than, the abundance of eggs and larvae at offshore stations (due west of the Everglades). (PDF file contains 81 pages.)