931 resultados para Mammalian cells


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The glial cells missing (gcm) gene in Drosophila encodes a transcription factor that determines the choice between glial and neuronal fates. We report here the isolation of two mammalian gcm homologs, Gcm1 and Gcm2, and the characterization of their expression patterns during embryonic development. Although Gcm2 is expressed in neural tissues at a low level, the major sites of expression for both of the mammalian genes are nonneural, suggesting that the functions of the mammalian homologs have diverged and diversified. However, when expressed ectopically, Gcm1 can substitute functionally for Drosophila gcm by transforming presumptive neurons into glia. Thus, certain biochemical properties, although not the specificity of the tissue in which the gene is expressed, have been conserved through the evolution of the Gcm gene family.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thymidine dinucleotide (pTpT) stimulates melanogenesis in mammalian pigment cells and intact skin, mimicking the effects of UV irradiation and UV-mimetic DNA damage. Here it is shown that, in addition to tanning, pTpT induces a second photoprotective response, enhanced repair of UV-induced DNA damage. This enhanced repair results in a 2-fold increase in expression of a UV-damaged chloramphenicol acetyltransferase expression vector transfected into pTpT-treated skin fibroblasts and keratinocytes, compared with diluent-treated cells. Direct measurement of thymine dimers and (6–4) photoproducts by immunoassay demonstrates faster repair of both of these UV-induced photoproducts in pTpT-treated fibroblasts. This enhanced repair capacity also improves cell survival and colony-forming ability after irradiation. These effects of pTpT are accomplished, at least in part, by the up-regulation of a set of genes involved in DNA repair (ERCC3 and GADD45) and cell cycle inhibition (SDI1). At least two of these genes (GADD45 and SDI1) are known to be transcriptionally regulated by the p53 tumor suppressor protein. Here we show that pTpT activates p53, leading to nuclear accumulation of this protein, and also increases the specific binding of this transcription factor to its DNA consensus sequence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The three largest known populations of amacrine cells in the rabbit retina were stained with fluorescent probes in whole mounts and counted at a series of retinal eccentricities. The retinas were counterstained using a fluorescent DNA-binding molecule and the total number of nuclei in the inner nuclear layer were counted in confocal sections. From the total number of inner nuclear layer cells and the known fraction of them occupied by amacrine cells, the fraction of amacrine cells made up by the stained populations could be calculated. Starburst cells made up 3%, indoleamine-accumulating cells made up 4%, and AII cells made up 11% of all amacrine cells. By referring four smaller populations of amacrine cells to the number of indoleamine-accumulating cells, they were estimated to make up 4% of all amacrine cells. Thus, 78% of all amacrine cells in the rabbit’s retina are known only from isolated examples, if at all. This proportion is similar in the retinas of the mouse, cat, and monkey. It is likely that a substantial fraction of the local circuit neurons present in other regions of the central nervous system are also invisible as populations to current techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spinal muscular atrophy is caused by defects in the survival motor neuron (SMN) gene. To better understand the patterns of expression of SMN in neuronal cells and tissues, we raised a polyclonal antibody (abSMN) against a synthetic oligopeptide from SMN exon 2. AbSMN immunostaining in neuroblastoma cells and mouse and human central nervous system (CNS) showed intense labeling of nuclear “gems,” along with prominent nucleolar immunoreactivity in mouse and human CNS tissues. Strong cytoplasmic labeling was observed in the perikarya and proximal dendrites of human spinal motor neurons but not in their axons. Immunoblot analysis revealed a 34-kDa species in the insoluble protein fractions from human SY5Y neuroblastoma cells, embryonic mouse spinal cord cultures, and human CNS tissue. By contrast, a 38-kDa species was detected in the cytosolic fraction of SY5Y cells. We conclude that SMN protein is expressed prominently in both the cytoplasm and nucleus in multiple types of neurons in brain and spinal cord, a finding consistent with a role for SMN as a determinant of neuronal viability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the cloning and characterization of rat α10, a previously unidentified member of the nicotinic acetylcholine receptor (nAChR) subunit gene family. The protein encoded by the α10 nAChR subunit gene is most similar to the rat α9 nAChR, and both α9 and α10 subunit genes are transcribed in adult rat mechanosensory hair cells. Injection of Xenopus laevis oocytes with α10 cRNA alone or in pairwise combinations with either α2-α6 or β2-β4 subunit cRNAs yielded no detectable ACh-gated currents. However, coinjection of α9 and α10 cRNAs resulted in the appearance of an unusual nAChR subtype. Compared with homomeric α9 channels, the α9α10 nAChR subtype displays faster and more extensive agonist-mediated desensitization, a distinct current–voltage relationship, and a biphasic response to changes in extracellular Ca2+ ions. The pharmacological profiles of homomeric α9 and heteromeric α9α10 nAChRs are essentially indistinguishable and closely resemble those reported for endogenous cholinergic eceptors found in vertebrate hair cells. Our data suggest that efferent modulation of hair cell function occurs, at least in part, through heteromeric nAChRs assembled from both α9 and α10 subunits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cyclic AMP (cAMP) stimulates the transport of Na+ and Na,K-ATPase activity in the renal cortical collecting duct (CCD). The aim of this study was to investigate the mechanism whereby cAMP stimulates the Na,K-ATPase activity in microdissected rat CCDs and cultured mouse mpkCCDc14 collecting duct cells. db-cAMP (10−3 M) stimulated by 2-fold the activity of Na,K-ATPase from rat CCDs as well as the ouabain-sensitive component of 86Rb+ uptake by rat CCDs (1.7-fold) and cultured mouse CCD cells (1.5-fold). Pretreatment of rat CCDs with saponin increased the total Na,K-ATPase activity without further stimulation by db-cAMP. Western blotting performed after a biotinylation procedure revealed that db-cAMP increased the amount of Na,K-ATPase at the cell surface in both intact rat CCDs (1.7-fold) and cultured cells (1.3-fold), and that this increase was not related to changes in Na,K-ATPase internalization. Brefeldin A and low temperature (20°C) prevented both the db-cAMP-dependent increase in cell surface expression and activity of Na,K-ATPase in both intact rat CCDs and cultured cells. Pretreatment with the intracellular Ca2+ chelator bis-(o-aminophenoxy)-N,N,N′,N′-tetraacetic acid also blunted the increment in cell surface expression and activity of Na,K-ATPase caused by db-cAMP. In conclusion, these results strongly suggest that the cAMP-dependent stimulation of Na,K-ATPase activity in CCD results from the translocation of active pump units from an intracellular compartment to the plasma membrane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ), and short time constants (about 200 μsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the targeting mechanism for proteins bound to the mammalian Lin-7 (mLin-7) PDZ domain, we created receptor protein chimeras composed of the carboxyl-terminal amino acids of LET-23 fused to truncated nerve growth factor receptor/P75. mLin-7 bound to the chimera with a wild-type LET-23 carboxyl-terminal tail (P75t-Let23WT), but not a mutant tail (P75t-Let23MUT). In Madin-Darby canine kidney (MDCK) cells, P75t-Let23WT localized to the basolateral plasma membrane domain, whereas P75t-Let23MUT remained apical. Furthermore, mutant mLin-7 constructs acted as dominant interfering proteins and inhibited the basolateral localization of P75t-Let23WT. The mechanisms for this differential localization were examined further, and, initially, we found that P75t-Let23WT and P75t-Let23MUT were delivered equally to the apical and basolateral plasma membrane domains. Although basolateral retention of P75t-Let23WT, but not P75t-Let23MUT, was observed, the greatest difference in receptor localization was seen in the rapid trafficking of P75t-Let23WT to the basolateral plasma membrane domain after endocytosis, whereas P75t-Let23MUT was degraded in lysosomes, indicating that mLin-7 binding can alter the fate of endocytosed proteins. Altogether, these data support a model for basolateral protein targeting in mammalian epithelial cells dependent on protein–protein interactions with mLin-7, and also suggest a dynamic role for mLin-7 in endosomal sorting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mammalian phosphatidylinositol transfer proteins (PITP) and the yeast Saccharomyces cerevisiae PITP (SEC14p) that show no sequence homology both catalyze exchange of phosphatidylinositol (PI) between membranes compartments in vitro. In HL-60 cells where the cytosolic proteins are depleted by permeabilization, exogenously added PITPalpha is required to restore G protein-mediated phospholipase Cbeta (PLCbeta) signaling. Recently, a second mammalian PITPbeta form has been described that shows 77% identity to rat PITPalpha. We have examined the ability of the two mammalian PITPs and SEC14p to restore PLC-mediated signaling in cytosol-depleted HL-60 and RBL-2H3 cells. Both PITPalpha and PITPbeta isoforms as well as SEC14p restore G protein-mediated PLCbeta signaling with a similar potency. In RBL-2H3 cells, crosslinking of the IgE receptor by antigen stimulates inositol lipid hydrolysis by tyrosine phosphorylation of PLCgamma1. Permeabilization of RBL cells leads to loss of PLCgamma1 as well as PITP into the extracellular medium and this coincides with loss of antigen-stimulated lipid hydrolysis. Both PLCgamma1 and PITP were required to restore inositol lipid signaling. We conclude that (i) because the PI binding/transfer activities of PITP/SEC14p is the common feature shared by all three transfer proteins, it must be the relevant activity that determines their abilities to restore inositol lipid-mediated signaling and (ii) PITP is a general requirement for inositol lipid hydrolysis regardless of how and which isoform of PLC is activated by the appropriate agonist.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Expression of the epsilon-subunit gene of the acetylcholine receptor (AChR) by myonuclei located at the neuromuscular junction is precisely regulated during development. A key role in this regulation is played by the synaptic portion of the basal lamina, a structure that is also known to contain agrin, a component responsible for the formation of postsynaptic specializations. We tested whether agrin has a function in synaptic AChR gene expression. Synaptic basal lamina from native adult muscle and recombinant agrin bound to various substrates induced in cultured rat myotubes AChR clusters that were colocalized with epsilon-subunit mRNA. Estimation of transcript levels by Northern hybridization analysis of total RNA showed a significant increase when myotubes were grown on substrate impregnated with agrin, but were unchanged when agrin was applied in the medium. The effect was independent of the receptor aggregating activity of the agrin isoform used, and agrin acted, at least in part, at the level of epsilon-subunit gene transcription. These findings are consistent with a role of agrin in the regulation of AChR subunit gene expression at the neuromuscular junction, which would depend on its binding to the synaptic basal lamina.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rod signals in the mammalian retina are thought to reach ganglion cells over the circuit rod-->rod depolarizing bipolar cell-->AII amacrine cell-->cone bipolar cells-->ganglion cells. A possible alternative pathway involves gap junctions linking the rods and cones, the circuit being rod-->cone-->cone bipolar cells-->ganglion cells. It is not clear whether this second pathway indeed relays rod signals to ganglion cells. We studied signal flow in the isolated rabbit retina with a multielectrode array, which allows the activity of many identified ganglion cells to be observed simultaneously while the preparation is stimulated with light and/or exposed to drugs. When transmission between rods and rod depolarizing bipolar cells was blocked by the glutamate agonist 2-amino-4-phosphonobutyric acid (APB), rod input to all On-center and briskly responding Off-center ganglion cells was dramatically reduced as expected. Off responses persisted, however, in Off-center sluggish and On-Off direction-selective ganglion cells. Presumably these responses were generated by the alternative pathway involving rod-cone junctions. This APB-resistant pathway may carry the major rod input to Off-center sluggish and On-Off direction-selective ganglion cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The peptide guanylin, which has recently been isolated from the intestine, is involved in the regulation of fluid secretion in the intestinal epithelium by activation of guanylate cyclase C, the putative guanylin receptor. Since the latter protein is also expressed in airway epithelia, we investigated the lung of three mammalian species for the presence and cellular localization of guanylin by immunoblot (Western blot) analyses and light and electron microscopical immunocytochemistry. In Western blots of bovine, guinea pig, and rat lung extracts, three different guanylin antisera directed against the midportion and against the C terminus of the precursor molecule identified a peptide band corresponding to the apparent molecular mass of guanylin. Localization studies in the lung revealed that guanylin is exclusively confined to nonciliated secretory (Clara) cells in the lining of distal conducting airways. The presence of guanylin in the lung and particularly its specific localization to Clara cells indicate that these cells may play a pivotal role in the local (paracrine) regulation of electrolyte/water transport in airway epithelia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through a screen to identify genes that induce multi-drug resistance when overexpressed, we have identified a fission yeast homolog of Int-6, a component of the human translation initiation factor eIF3. Disruption of the murine Int-6 gene by mouse mammary tumor virus (MMTV) has been implicated previously in tumorigenesis, although the underlying mechanism is not yet understood. Fission yeast Int6 was shown to interact with other presumptive components of eIF3 in vivo, and was present in size fractions consistent with its incorporation into a 43S translation preinitiation complex. Drug resistance induced by Int6 overexpression was dependent on the AP-1 transcription factor Pap1, and was associated with increased abundance of Pap1-responsive mRNAs, but not with Pap1 relocalization. Fission yeast cells lacking the int6 gene grew slowly. This growth retardation could be corrected by the expression of full length Int6 of fission yeast or human origin, or by a C-terminal fragment of the fission yeast protein that also conferred drug resistance, but not by truncated human Int-6 proteins corresponding to the predicted products of MMTV-disrupted murine alleles. Studies in fission yeast may therefore help to explain the ways in which Int-6 function can be perturbed during MMTV-induced mammary tumorigenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: A recent study by Dhillon et al. [12], identified both angioinvasion and mTOR as prognostic biomarkers for poor survival in early stage NSCLC. The aim of this study was to verify the above study by examining the angioinvasion and mTOR expression profile in a cohort of early stage NSCLC patients and correlate the results to patient clinico-pathological data and survival. Methods: Angioinvasion was routinely recorded by the pathologist at the initial assessment of the tumor following resection. mTOR was evaluated in 141 early stage (IA-IIB) NSCLC patients (67 - squamous; 60 - adenocarcinoma; 14 - others) using immunohistochemistry (IHC) analysis with an immunohistochemical score (IHS) calculated (% positive cells × staining intensity). Intensity was scored as follows: 0 (negative); 1+ (weak); 2+ (moderate); 3+ (strong). The range of scores was 0-300. Based on the previous study a cut-off score of 30 was used to define positive versus negative patients. The impact of angioinvasion and mTOR expression on prognosis was then evaluated. Results: 101 of the 141 tumors studied expressed mTOR. There was no difference in mTOR expression between squamous cell carcinoma and adenocarcinoma. Angioinvasion (p= 0.024) and mTOR staining (p= 0.048) were significant univariate predictors of poor survival. Both remained significant after multivariate analysis (p= 0.037 and p= 0.020, respectively). Conclusions: Our findings verify angioinvasion and mTOR expression as new biomarkers for poor outcome in patients with early stage NSCLC. mTOR expressing patients may benefit from novel therapies targeting the mTOR survival pathway. © 2011 Elsevier Ireland Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We hypothesized that normal human mesothelial cells acquire resistance to asbestos-induced toxicity via induction of one or more epidermal growth factor receptor (EGFR) - linked survival pathways (phosphoinositol-3-kinase/AKT/ mammalian target of rapamycin and extracellular signal - regulated kinase [ERK] 1/2) during simian virus 40 (SV40) transformation and carcinogenesis. Both isolated HKNM-2 mesothelial cells and a telomerase-immortalized mesothelial line (LP9/TERT-1) were more sensitive to crocidolite asbestos toxicity than an SV40 Tag-immortalized mesothelial line (MET5A) and malignant mesothelioma cell lines (HMESO and PPM Mill). Whereas increases in phosphorylation of AKT (pAKT) were observed in MET5A cells in response to asbestos, LP9/TERT-1 cells exhibited dose-related decreases in pAKT levels. Pretreatment with an EGFR phosphorylation or mitogen-activated protein kinase kinase 1/2 inhibitor abrogated asbestos-induced phosphorylated ERK (pERK) 1/2 levels in both LP9/TERT-1 and MET5A cells as well as increases in pAKT levels in MET5A cells. Transient transfection of small interfering RNAs targeting ERK1, ERK2, or AKT revealed that ERK1/2 pathways were involved in cell death by asbestos in both cell lines. Asbestos-resistant HMESO or PPM Mill cells with high endogenous levels of ERKs or AKT did not show dose-responsive increases in pERK1/ERK1, pERK2/ERK2, or pAKT/AKT levels by asbestos. However, small hairpin ERK2 stable cell lines created from both malignant mesothelioma lines were more sensitive to asbestos toxicity than shERK1 and shControl lines, and exhibited unique, tumor-specific changes in endogenous cell death - related gene expression. Our results suggest that EGFR phosphorylation is causally linkedto pERK and pAKT activation by asbestos in normal and SV40 Tag - immortalized human mesothelial cells. They also indicate that ERK2 plays a role in modulating asbestos toxicity by regulating genes critical to cell injury and survival that are differentially expressed in human mesotheliomas.