854 resultados para Machine scheduling
Resumo:
This paper introduces a new tool for pattern recognition. Called the Discriminative Paraconsistent Machine (DPM), it is based on a supervised discriminative model training that incorporates paraconsistency criteria and allows an intelligent treatment of contradictions and uncertainties. DPMs can be applied to solve problems in many fields of science, using the tests and discussions presented here, which demonstrate their efficacy and usefulness. Major difficulties and challenges that were overcome consisted basically in establishing the proper model with which to represent the concept of paraconsistency.
Resumo:
To provide a brief review of the development of cardiopulmonary bypass. A review of the literature on the development of extracorporeal circulation techniques, their essential role in cardiovascular surgery, and the complications associated with their use, including hemolysis and inflammation. The advancement of extracorporeal circulation techniques has played an essential role in minimizing the complications of cardiopulmonary bypass, which can range from various degrees of tissue injury to multiple organ dysfunction syndrome. Investigators have long researched the ways in which cardiopulmonary bypass may insult the human body. Potential solutions arose and laid the groundwork for development of safer postoperative care strategies. Steady progress has been made in cardiopulmonary bypass in the decades since it was first conceived of by Gibbon. Despite the constant evolution of cardiopulmonary bypass techniques and attempts to minimize their complications, it is still essential that clinicians respect the particularities of each patient's physiological function.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article describes the use of Artificial Intelligence (IA) techniques applied in cells of a manufacturing system. Machine Vision was used to identify pieces and their positions of two different products to be assembled in the same productive line. This information is given as input for an IA planner embedded in the manufacturing system. Therefore, initial and final states are sent automatically to the planner capable to generate assembly plans for a robotic cell, in real time.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.
Resumo:
Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.
Resumo:
Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In this study, we propose an approach to support dynamic lightpath scheduling in such networks. To minimize blocking probability in a network that accommodates dynamic scheduled lightpath demands (DSLDs), resource allocation should be optimized in a dynamic manner. However, for the network users who desire deterministic services, resources must be reserved in advance and guaranteed for future use. These two objectives may be mutually incompatible. Therefore, we propose a two-phase dynamic lightpath scheduling approach to tackle this issue. The first phase is the deterministic lightpath scheduling phase. When a lightpath request arrives, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with the deterministic lightpath schedule. The second phase is the lightpath re-optimization phase, in which the network control plane re-provisions some already scheduled lightpaths. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce WDM network blocking.
Resumo:
Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In a dynamic environment, the end user requests for dynamic scheduled lightpath demands (D-SLDs) need to be serviced without the knowledge of future requests. Even though the starting time of the request may be hours or days from the current time, the end-user however expects a quick response as to whether the request could be satisfied. We propose a two-phase approach to dynamically schedule and provision D-SLDs. In the first phase, termed the deterministic lightpath scheduling phase, upon arrival of a lightpath request, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with a deterministic lightpath schedule. In the second phase, termed the lightpath re-optimization phase, we re-provision some already scheduled lightpaths to re-optimize for improving network performance. We study two reoptimization scenarios to reallocate network resources while maintaining the existing lightpath schedules. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce network blocking.
Resumo:
We propose an efficient scheduling scheme that optimizes advance-reserved lightpath services in reconfigurable WDM networks. A re-optimization approach is devised to reallocate network resources for dynamic service demands while keeping determined schedule unchanged.
Resumo:
Active machine learning algorithms are used when large numbers of unlabeled examples are available and getting labels for them is costly (e.g. requiring consulting a human expert). Many conventional active learning algorithms focus on refining the decision boundary, at the expense of exploring new regions that the current hypothesis misclassifies. We propose a new active learning algorithm that balances such exploration with refining of the decision boundary by dynamically adjusting the probability to explore at each step. Our experimental results demonstrate improved performance on data sets that require extensive exploration while remaining competitive on data sets that do not. Our algorithm also shows significant tolerance of noise.
Resumo:
One problem with using component-based software development approach is that once software modules are reused over generations of products, they form legacy structures that can be challenging to understand, making validating these systems difficult. Therefore, tools and methodologies that enable engineers to see interactions of these software modules will enhance their ability to make these software systems more dependable. To address this need, we propose SimSight, a framework to capture dynamic call graphs in Simics, a widely adopted commercial full-system simulator. Simics is a software system that simulates complete computer systems. Thus, it performs nearly identical tasks to a real system but at a much lower speed while providing greater execution observability. We have implemented SimSight to generate dynamic call graphs of statically and dynamically linked functions in x86/Linux environment. A case study illustrates how we can use SimSight to identify sources of software errors. We then evaluate its performance using 12 integer programs from SPEC CPU2006 benchmark suite.
Resumo:
The adaptation of a commercially available ice machine for autonomous photovoltaic operation without batteries is presented. In this adaptation a 1040 W(p) photovoltaic array directly feeds a variable-speed drive and a 24 V(dc) source. The drive runs an induction motor coupled by belt-and-pulley to an open reciprocating compressor, while the dc source supplies a solenoid valve and the control electronics. Motor speed and refrigerant evaporation pressure are set aiming at continuously matching system power demand to photovoltaic power availability. The resulting system is a simple integration of robust, standard, readily available parts. It produces 27 kg of ice in a clear-sky day and has ice production costs around US$0.30/kg. Although a few machine features might be specific to Brazil, its technical and economical guidelines are applicable elsewhere. Copyright (C); 2010 John Wiley & Sons, Ltd.
Resumo:
This paper proposes three new hybrid mechanisms for the scheduling of grid tasks, which integrate reactive and proactive approaches. They differ by the scheduler used to define the initial schedule of an application and by the scheduler used to reschedule the application. The mechanisms are compared to reactive and proactive mechanisms. Results show that hybrid approach produces performance close to that of the reactive mechanisms, but demanding less migrations.