941 resultados para MULTIPLE-VESSEL DISEASE
Resumo:
Repeated titrations of strains of Newcastle disease virus (NDV) are more conveniently undertaken in cell cultures rather than in embryonated eggs. This is relatively easy with mesogenic and velogenic strains that are cytopathic to various cell lines, but is difficult with avirulent Australian isolates that are poorly cytopathic. Strain V4 for example has been shown to be pathogenic iin vitro only to of chicken embryo liver cells. Strain 1-2 was reported to produce cytopathic effect (CPE) on chicken embryo kidney (CEK) cells. The present studies confirmed this observation and developed a quantal assay. CEK cells infected with strain 1-2 developed CPE characterized by degeneration, rounding, granularity and vacuolation, and the formation of synctia. End points were readily established by microscopic examination of fixed and stained cells. In virus infectivity studies on strain 1-2, where multiple titrations are required and where large numbers of samples are used, titration using CEK cell grown in microtitre plates is recommended. Such studies may not be feasible in embryonated eggs.
Resumo:
Deforestation often occurs as temporal waves and in localized fronts termed 'deforestation hotspots' driven by economic pulses and population pressure. Of particular concern for conservation planning are 'biodiversity hotspots' where high concentrations of endemic species undergo rapid loss and fragmentation of habitat. We investigate the deforestation process in Caqueta, a biodiversity hotspot and major colonization front of the Colombian Amazon using multi-temporal satellite imagery of the periods 1989-1996-1999-2002. The probabilities of deforestation and regeneration were modeled against soil fertility, accessibility and neighborhood terms, using logistic regression analysis. Deforestation and regeneration patterns and rates were highly variable across the colonization front. The regional average annual deforestation rate was 2.6%, but varied locally between -1.8% (regeneration) and 5.3%, with maximum rates in landscapes with 40-60% forest cover and highest edge densities, showing an analogous pattern to the spread of disease. Soil fertility and forest and secondary vegetation neighbors showed positive and significant relationships with the probability of deforestation. For forest regeneration, soil fertility had a significant negative effect while the other parameters were marginally significant. The logistic regression models across all periods showed a high level of discrimination power for both deforestation and forest regeneration, with ROC values > 0.80. We document the effect of policies and institutional changes on the land clearing process, such as the failed peace process between government and guerillas in 1999-2002, which redirected the spread of deforestation and increased forest regeneration. The implications for conservation in biologically rich areas, such as Caqueta are discussed. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
This chapter is concerned with the influence of the brain microcirculation on the development of the pathological changes in Creutzfeldt-Jakob disease (CJD). Hence, the spatial correlations between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles were studied in immunolabelled sections of the cerebral cortex, hippocampus, and cerebellum in two subtypes of CJD, viz., sporadic Creutzfeldt-Jakob disease (sCJD) and variant CJD (vCJD). In sCJD, both the vacuolation and the ‘synaptic-type’ PrP deposits were spatially correlated with the blood vessels; the PrP deposits being the more strongly correlated than the vacuoles. In vCJD, there were no significant spatial correlations between either the vacuolation or the diffuse-type of PrP deposit and the microvessels. By contrast, a consistent pattern of spatial correlation was observed in gyri of the cerebral cortex between the florid PrP deposits and blood vessels. In both sCJD and vCJD, the frequency of positive spatial correlations was similar in the different gyri of the cerebral cortex and in the upper compared with the lower laminae. In conclusion, the microcirculation appears to be more significantly involved in determining the pathological changes in sCJD than in vCJD. The spatial correlations of the florid PrP deposits in vCJD and the synaptic deposits in sCJD and the blood vessels may be attributable to factors associated with the microcirculation which enhance the aggregation of PrP molecules rather than representing a possible haematogenous spread of the disease.
Resumo:
In cases of late-onset Alzheimer’s disease (AD), there is a spatial correlation between the classsic ‘cored’ type of Beta-amyloid (Abeta) deposit and the large vertically penetrating arterioles in the cerebral cortex suggesting that blood vessels are involved in the pathogenesis of the classic deposits. In this chapter, the spatial correlations between the diffuse, primitive, and classic Abeta deposits and blood vessels were studied in 10 cases of early-onset AD in the age range 40 – 65 years. Sections of frontal cortex were immunostained with antibodies against Abeta?and with collagen IV to reveal the Abeta deposits and blood vessel profiles. In the early-onset cases as a whole, all types of Abeta? deposit and blood vessel profiles were distributed in clusters. There was a positive spatial correlation between the clusters of the diffuse Abeta deposits and the larger (>10µm) and smaller diameter (<10?m) blood vessel profiles in one and three cases respectively. The primitive and classic Abeta deposits were spatially correlated with larger and smaller blood vessels both in three and four cases respectively. Spatial correlations between the Abeta deposits and blood vessels may be more prevalent in cases expressing amyloid precursor protein (APP) than presenilin 1 (PSEN1) mutations. Apolipoprotein E (Apo E) genotype of the patient did not appear to influence the spatial correlation with blood vessel profiles. The data suggest that the larger diameter blood vessels are less important in the pathogenesis of the classic Abeta deposits in early-onset compared with late-onset AD.
Resumo:
Parkinson's disease (PD) is a common disorder of middle-aged and elderly people, in which there is degeneration of the extra-pyramidal motor system. In some patients, the disease is associated with a range of visual signs and symptoms, including defects in visual acuity, colour vision, the blink reflex, pupil reactivity, saccadic and smooth pursuit movements and visual evoked potentials. In addition, there may be psychophysical changes, disturbances of complex visual functions such as visuospatial orientation and facial recognition, and chronic visual hallucinations. Some of the treatments associated with PD may have adverse ocular reactions. If visual problems are present, they can have an important effect on overall motor function, and quality of life of patients can be improved by accurate diagnosis and correction of such defects. Moreover, visual testing is useful in separating PD from other movement disorders with visual symptoms, such as dementia with Lewy bodies (DLB), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Although not central to PD, visual signs and symptoms can be an important though obscure aspect of the disease and should not be overlooked.
Resumo:
In sporadic Alzheimer’s disease (SAD), the classic (‘dense-cored’) ß-amyloid (Aß) deposits are aggregated around the larger blood vessels in the upper laminae of the cerebral cortex. To determine whether a similar relationship exists in familial AD (FAD), the spatial correlations between the diffuse, primitive, and classic ß-amyloid (Aß deposits and blood vessels were studied in ten FAD cases including cases linked to amyloid precursor protein (APP) and presenilin (PSEN) gene mutations and expressing apolipoprotein E (apo E) allele E4. Sections of frontal cortex were immunolabelled with antibodies against Aß and with collagen IV to reveal the Aß deposits and blood vessel profiles. In the FAD cases as a whole, Aßdeposits were distributed in clusters. There was a positive spatial correlation between the clusters of the diffuse Aßdeposits and the larger (>10 µm) and smaller diameter (<10 µm) blood vessels in one and three cases respectively. The primitive Aß deposits were spatially correlated with larger and smaller blood vessels each in four cases and the classic deposits in three and four cases respectively. Apo E genotype of the patient did not influence spatial correlation with blood vessels. Hence, spatial correlations between the classic deposits and larger diameter blood vessels were significantly less frequent in FAD compared with SAD. It was concluded that both Aß deposit morphology and AD subtype determine spatial correlations with blood vessels in AD.
Resumo:
Various hypotheses could explain the relationship between beta-amyloid (Abeta) deposition and the vasculature in Alzheimer's disease (AD). Amyloid deposition may reduce capillary density, affect endothelial cells of blood vessels, result in diffusion from blood vessels, or interfere with the perivascular clearance mechanism. Hence, the spatial pattern of the classic ('cored') type of Abeta deposit was studied in the upper laminae (I,II/III) of the superior frontal gyrus in nine cases of sporadic AD (SAD). Sections were immunostained with antibodies against Abeta and with collagen IV to study the relationships between the spatial distribution of the classic deposits and the blood vessel profiles. Both the classic deposits and blood vessel profiles were distributed in clusters. In all cases, there was a positive spatial correlation between the clusters of the classic deposits and the larger diameter (>10 microm) blood vessel profiles and especially the vertically penetrating arterioles. In only 1 case, was there a significant spatial correlation between the clusters of the classic deposits and the smaller diameter (<10 microm) capillaries. There were no negative correlations between the density of Abeta deposits and the smaller diameter capillaries. In 9/11 cases, the clusters of the classic deposits were significantly larger than those of the clusters of the larger blood vessel profiles. In addition, the density of the classic deposits declined as a negative exponential function with distance from a vertically penetrating arteriole. These results suggest that the classic Abeta deposits cluster around the larger blood vessels in the upper laminae of the frontal cortex. This aggregation could result from diffusion of proteins from blood vessels or from overloading the system of perivascular clearance from the brain.
Resumo:
The densities of the glial cytoplasmic inclusions (GCI), neuronal inclusions (NI), and abnormal neurons were studied in the frontal cortex, hippocampus, cerebellum, basal ganglia and areas of the pons and medulla in 10 cases of multiple system atrophy (MSA). GCI density was greater in the substantia nigra and globus pallidus compared with the frontal cortex and hippocampus. Abnormal neurons were most abundant in the frontal cortex, substantia nigra, and inferior olivary nucleus. NI and abnormal neuron densities were positively correlated in the globus pallidus but negatively correlated in the hippocampus. The NI and GCI were only positively correlated in the pons. GCI in the pons and inferior olivary nucleus, NI in the substantia nigra, and abnormal neurons in the frontal cortex varied significantly between cases. The MSA cases did not cluster according to disease subtype. The data suggest that: 1) the greatest densities of pathological changes occur in the substantia nigra and globus pallidus, 2) density of the GCI is unrelated to that of the NI, and 3) there is overlapping pathology between the various subtypes of MSA.
Resumo:
To test the hypothesis that the distribution of the pathology in variant Creutzfeldt-Jakob disease (vCJD) represents haematogenous spread of the disease, we studied the spatial correlation between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles in the cerebral cortex, hippocampus, dentate gyrus, and cerebellum of 11 cases of the disease. In the majority of areas, there were no significant spatial correlations between either the vacuolation or the diffuse type of PrP deposit and the blood vessels. By contrast, a consistent pattern of spatial correlation was observed between the florid PrP deposits and blood vessels mainly in the cerebral cortex. The frequency of positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower laminae. Hence, with the exception of the florid deposits, the data do not demonstrate a spatial relationship between the pathological features of vCJD and blood vessels. The spatial correlation of the florid deposits and blood vessels may be attributable to factors associated with the blood vessels that promote the aggregation of PrP to form a condensed core rather than reflecting the haematogenous spread of the disease. © 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study tested the hypothesis that variations in the density of the florid prion protein (PrP) plaques in the brain of patients with variant Creutzfeldt-Jakob disease (vCJD) were spatially related to blood vessels. In 81% of areas of the cerebral cortex sampled and in 37% of the remaining areas, which included the hippocampus, dentate gyrus, and cerebellum, there was a positive spatial correlation between the density of the florid plaques and the larger blood vessel profiles. The frequency of the positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower cortical laminae. The data support the hypothesis that the florid plaques cluster around the larger blood vessels in vCJD, the density of associated plaques increasing with vessel size. The development of florid plaques close to blood vessels may be due to factors associated with the blood vessels that enhance the aggregation of PrP to form the dense cores of florid plaques and is unlikely to reflect the haematogenous spread of PrP into the brain.
Resumo:
The objective of this article was to determine whether the pathological changes of Creutzfeldt-Jacob disease (CJD) were related to the brain microcirculation. Hence, the spatial correlations between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles were studied in immunolabelled sections of the cerebral cortex, hippocampus, and cerebellum in two subtypes of CJD, viz., sporadic CJD (sCJD) and variant CJD (vCJD). In sCJD, both the vacuolation and the ‘synaptic-type’ PrP deposits were spatially correlated with the microvessels; the PrP deposits being more strongly correlated than the vacuoles. In vCJD, there were no significant spatial correlations between either the vacuolation or the diffuse-type of PrP deposit and the microvessels. By contrast, a consistent pattern of spatial correlation was observed in gyri of the cerebral cortex between the florid PrP deposits and microvessels. In both sCJD and vCJD, the frequency of positive spatial correlations was similar in the different gyri of the cerebral cortex and in the upper compared with the lower laminae. In conclusion, the microcirculation may be more significantly involved in determining the pathological changes in sCJD than in vCJD. The spatial correlations of the florid PrP deposits in vCJD and the synaptic deposits in sCJD and the blood vessels may be attributable to factors associated with the microcirculation which enhance the aggregation of PrP molecules rather than representing a possible haematogenous spread of the disease. S
Resumo:
Urinary proteomics is emerging as a powerful non-invasive tool for diagnosis and monitoring of variety of human diseases. We tested whether signatures of urinary polypeptides can contribute to the existing biomarkers for coronary artery disease (CAD). We examined a total of 359 urine samples from 88 patients with severe CAD and 282 controls. Spot urine was analyzed using capillary electrophoresis on-line coupled to ESI-TOF-MS enabling characterization of more than 1000 polypeptides per sample. In a first step a "training set" for biomarker definition was created. Multiple biomarker patterns clearly distinguished healthy controls from CAD patients, and we extracted 15 peptides that define a characteristic CAD signature panel. In a second step, the ability of the CAD-specific panel to predict the presence of CAD was evaluated in a blinded study using a "test set." The signature panel showed sensitivity of 98% (95% confidence interval, 88.7-99.6) and 83% specificity (95% confidence interval, 51.6-97.4). Furthermore the peptide pattern significantly changed toward the healthy signature correlating with the level of physical activity after therapeutic intervention. Our results show that urinary proteomics can identify CAD patients with high confidence and might also play a role in monitoring the effects of therapeutic interventions. The workflow is amenable to clinical routine testing suggesting that non-invasive proteomics analysis can become a valuable addition to other biomarkers used in cardiovascular risk assessment.
Resumo:
TG2 is multifunctional enzyme which can be secreted to the cell surface by an unknown mechanism where its Ca(2+)-dependent transamidase activity is implicated in a number of events important to cell behaviour. However, this activity may only be transient due to the oxidation of the enzyme in the extracellular environment including its reaction with NO probably accounting for its many other roles, which are transamidation independent. In this review, we discuss the novel roles of TG2 at the cell surface and in the ECM acting either as a transamidating enzyme or as an extracellular scaffold protein involved in cell adhesion. Such roles include its ability to act as an FN co-receptor for ß integrins or in a heterocomplex with FN interacting with the cell surface heparan sulphate proteoglycan syndecan-4 leading to activation of PKCa. These different properties of TG2 involve this protein in various physiological processes, which if not regulated appropriately can also lead to its involvement in a number of diseases. These include metastatic cancer, tissue fibrosis and coeliac disease, thus increasing its attractiveness as both a therapeutic target and diagnostic marker.
Resumo:
Celiac disease is characterized by the presence of specific autoantibodies targeted against transglutaminase 2 (TG2) in untreated patients' serum and at their production site in the small-bowel mucosa below the basement membrane and around the blood vessels. As these autoantibodies have biological activity in vitro, such as inhibition of angiogenesis, we studied if they might also modulate the endothelial barrier function. Our results show that celiac disease patient autoantibodies increase endothelial permeability for macromolecules, and enhance the binding of lymphocytes to the endothelium and their transendothelial migration when compared to control antibodies in an endothelial cell-based in vitro model. We also demonstrate that these effects are mediated by increased activities of TG2 and RhoA. Since the small bowel mucosal endothelium serves as a "gatekeeper" in inflammatory processes, the disease-specific autoantibodies targeted against TG2 could thus contribute to the pathogenic cascade of celiac disease by increasing blood vessel permeability.
Resumo:
The density of diffuse, primitive and classic beta-amyloid (A beta) deposits was studied in relation to the incidence of blood vessels in the superior frontal gyrus of nine cases of sporadic Alzheimer's disease (SAD), two cases of familial Alzheimer's disease (FAD) with amyloid precursor protein (APP) mutations (APP717, Val --> Ile), and eight cases of FAD not linked to chromosomes 21, 14 or 1. Stepwise multiple regression was used to determine for each patient whether variations in the density of A beta deposits along the cortex were significantly correlated with the incidence of blood vessels. In the majority of FAD and SAD cases, the density of the diffuse and primitive type A beta deposits was not related to blood vessels. However, the incidence of the larger diameter (> 10 microns) blood vessels was positively correlated with the density of the classic A beta deposits in eight (89%) SAD and two (20%) FAD cases. The data suggest that the densities of vessels and deposits were not significantly correlated between cases but only within cases, suggesting a strictly local effect. In addition, the spatial association between classic A beta deposits and blood vessels may be more apparent in SAD compared with FAD cases.