995 resultados para MINERAL METABOLISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450 3A4 (CYP3A4), a major member of cytochrome P450 isoenzymes, metabolizes the majority of steroids in 6beta-position. For the purpose of determining requisite structural features of a series of structurally related steroids for CYP3A4-mediated metabolism, three-dimensional pharmacophore modeling as well as electrotopological state map were conducted for 15 steroids. Though prior studies speculated that the chemical reactivity of the allylic 6beta-position might have a greater influence on CYP3A4 selective 6-hydroxylation than steric constraints in the enzyme, our results reveal that for CYP3A4 steroidal substrates, it is not the chemical reactivity of atoms at 6beta-site, but the pharmacophoric features, i.e. the two hydrophobic rings together with two H-bond donors, that act as the key factors responsible for detemining the CYP3A4 selective 6-hydroxylation of steroids. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant cell cultures have been suggested as a feasible technology for the production of a myriad of plant-derived metabolites. However, commercial application of plant cell culture has met limited success with only a handful of metabolites produced at the pilot- and commercial-scales. To improve the production of secondary metabolites in plant cell cultures, efforts have been devoted predominantly to the optimization of biosynthetic pathways by both process and genetic engineering approaches. Given that secondary metabolism includes-the synthesis. metabolism and catabolism of endogenous compounds by the specialized proteins, this review intends to draw attention to the manipulation and optimization of post-biosynthetic events that follow the formation of core metabolite structures in biosynthetic pathways. These post-biosynthetic events-the chemical and enzymatic modifications, transport, storage/secretion and catabolism/degradation have been largely unexplored in the past. Potential areas are identified where further research is needed to answer fundamental questions that have implications for advanced bioprocess design. Anthocyanin production by plant cell cultures is used as a case study for this discussion, as it presents a good example of compounds for which there are extensive research publications but still no commercial bioprocess. It is perceived that research on post-biosynthetic processes may lead to future opportunities for significant advances in commercial plant cell cultures. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Net organic metabolism (that is, the difference between primary production and respiration of organic matter) in the coastal ocean may be a significant term in the oceanic carbon budget. Historical change in the rate of this net metabolism determines the importance of the coastal ocean relative to anthropogenic perturbations of the global carbon cycle. Consideration of long-term rates of river loading of organic carbon, organic burial, chemical reactivity of land-derived organic matter, and rates of community metabolism in the coastal zone leads us to estimate that the coastal zone oxidizes about 7 × 1012 moles C/yr. The open ocean is apparently also a site of net organic oxidation (∼16 × 1012 moles C/yr). Thus organic metabolism in the ocean appears to be a source of CO2 release to the atmosphere rather than being a sink for atmospheric carbon dioxide. The small area of the coastal ocean accounts for about 30% of the net oceanic oxidation. Oxidation in the coastal zone (especially in bays and estuaries) takes on particular importance, because the input rate is likely to have been altered substantially by human activities on land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has become clear that the last 15-20 years that the immediate effect of a wide range of environmental stresses,and of infection,on vascular plants is to increase the information of reactive oxygen species(ROS) and to impose oxidative stress on the cells.Since 1994,sufficient examples similar responses in a broad range of marine macroalgae have been decribed to show that reactive oxygen metabolism also underlies the mechanisms by which seaweeds respond(and become resistant) to stress and infection.Desiccation,freezing,low temperatures,high light,ultraviolet radiation,and heavy metals all tend to result in a gradual and continued buildup of ROS because photosynthesis is inhibited and excess energy results in the formation of singlet oxygen.The response to other stresses (infection or oligosaccharides which signal that infection is occurring,mechanical stress,hyperosmotic shock) is quite different-a more rapid and intence,but short-lived production of ROS ,discribed as an "oxidative burst"-which is attributed to activation of NADPHoxidases in the plasma membrane.Seaweed species that are able to survive such stresses or resist infection have the capacity to remove the ROS through a high cellular content of antioxidant compounds,or a high activity of antioxidant enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM)+ data have been successfully employed in the field of mineral exploration to identify key minerals over arid and semi-arid terrains. However, redundant vegetation and cloud may seriously interfere with the discrimination of the minerals with diagnostic features. Therefore, in this study, we use masking technique to eliminate the negative influence of vegetation and cloud and Crosta technique to identify the diagnostic features of hydroxyl-minerals, carbonate-minerals and iron oxides. Then the anomalies were endowed with special colours and overlapped with the remote-sensing and geochemical data, overlaying images as remote-sensing anomalies. The mineral exploration work was carried through by synthetic analysis of the remote-sensing images, geochemical data and structures. Finally, areas with high correlation between the occurrence of hydrothermal alteration and presence of main faults and geochemical anomalies were considered as mineral exploration targets worthy of further detailed exploration programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary electrophoresis with electrochemiluminescene detection was used to characterize procaine hydrolysis as a probe for butyrylcholinesterase by in vitro procaine metabolism in plasma with butyrylcholinesterase acting as bioscavenger. Procaine and its metabolite N,N-diethylethanolamine were separated at 16 kV and then detected at 1.25 V in the presence of 5.0 mM Ru(bpy)(3)(2+), with the detection limits of 2.4 x 10(-7) and 2.0 x 10(-8) mol/L (S/N=3), respectively. The Michaelis constant K-m value was 1.73 x 10(-4) mol/L and the maximum velocity V-max was 1.62 x 10(-6) mol/L/min. Acetylcholine bromide and choline chloride presented inhibition effects on the enzymatic cleavage of procaine, with the 50% inhibition concentration (IC50) of 6.24 x 10(-3) and 2.94 x 10(-4) mol/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-field nuclear magnetic resonance (NMR) spectra can be used for the rapid multicomponent analysis in small amounts of biological fluids. In this paper, the effect of La (NO3)(3) on the rats' metabolism in urine was investigated by H-1 NMR analysis. The experimental groups of wistar rats were injected intraperitoneally with La(NO3)(3) at doses of 0.2, 2.0, 10 and 20mg/kg body weight. The remarkable variation of low molecular weight metabolites in urine has been identified by H-1 NMR spectra, in which dimethylamine, N, N-dimethylglycine, urea, alpha -ketoglutarate, trimethylamine N-oxide, succinate, citrate and amino acids have been suggested as NMR markers for renal damage and ethanol, lactate, taurine as the markers for liver damage. This work may assess its possible use in the early detection of biochemical changes associated with Rare Earth induced kidney and liver dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed rearing is an important part in large scale clam culture industry. Since the nutritional history affects early development in bivalve, the condition of larval nutrition plays a key role in successful seed rearing. So far, the molecular mechanism of nutrient uptake in bivalve larvae is unclear. As one of the important proteolytic enzymes, cathepsin B of several organisms has been reported to be involved in digestion. We intended to analyze whether cathepsin B is involved in larval nutrient metabolism in the economic bivalve, clam Meretrix meretrix. The full length of M. meretrix cathepsin B (MmeCB) cDNA was cloned, which is 1647 bp with an open reading frame of 1014 bp. The deduced amino acid sequence encoded a preproenzyme of 337 residues with Cys-114, His-282 and Asn-302 composing cathepsin B activity center. The temporal and spatial expressions of MmeCB mRNA were examined from trochophore to post larva stages by whole mount in situ hybridization. In trochophore stage, no detectable signal was found. In the later three stages, MmeCB mRNA was detected in the digestive gland, suggesting a possible role of MmeCB in digestion. Moreover, MmeCB mRNA was also observed in the epidermal cells in D-veligers. Cathepsin B specific inhibitor (CA074 methyl ester) was applied to block the activity of cathepsin B in unfed larvae. The average shell lengths of treated larvae were smaller than that in control groups. The results of mRNA epidermal distribution and inhibitor treatment in D-veligers indicated that MmeCB may be also associated with other pathway of nutrient metabolism in larval epidermis. The overall results in this paper revealed that MmeCB might play a role in larval nutrient metabolism. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution for percent content of light mineral is divided in detail to emphasize distributional trends of higher and lower contents by using 222 samples of light mineral in the southern Yellow Sea. 5 mineral provinces are divided, and they are I-north mineral province of the southern Yellow Sea, the sediment dominantly derived from the Yellow River; II-mixed mineral province, the sediment derived from both the Yellow River and Yangtze River; III-middle mineral province, the sediment derived mainly from the Yellow River and a part of sediment derived from Yangtze River; IV-province east of Yangtze River mouth, the sediment derived dominantly from Yangtze River; and V south mineral province, sediment was affected by relict sediment and modern sediment of Yangtze River. In this paper, the assemblage of dominant mineral and diagnostic mineral for the five provinces are discerned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better understand the characteristics of the clay minerals in the southern Yellow Sea, the X-ray quantitative determinations have been carried out for the surface samples obtained from the Yellow Sea. With newly compiled clay mineral synoptic maps, the depositional processes were described for four main clay minerals (illite, chlorite, kaolinite and smectite). The analysis shows that most clay minerals are of terrigenous source with the Huanghe River acting as the major sediment supplier. Besides, the source of muddy sediments in the Yellow Sea was also discussed. As for the central Yellow Sea mud (CYSM), the sediments in its northern part mainly come from the Huanghe River, and those in the rest are of multi-origin. Very similarly, a large amount of sediments in the northern part of the southeastern Yellow Sea Mud (SEYSM) derive from the Keum River and Yeong-san River, while those in the southern part are of multi-origin.