964 resultados para MESSENGER-RNA STABILITY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exogenously added IL-10 rapidly inhibited Staphylococcus aureus- or LPS- induced cytokine mRNA expression in human PBMCs and monocytes, with a maximal effect observed when IL-10 was added from 20 h before until 1 h after the addition of the inducers. Nuclear run-on assays revealed that the inhibition of IL-12 p40, IL-12 p35, and TNF-α was at the gene transcriptional level and that the addition of IL-10 to S. aureus- or LPS-treated PBMCs did not affect mRNA stability. The inhibitory activity of IL-10 was abrogated by cycloheximide (CHX), suggesting the involvement of a newly synthesized protein(s). The addition of CHX at 2 h before S. aureus or LPS also inhibited the accumulation of IL-12 p40 mRNA, but did not inhibit IL-12 p35 and TNF-α mRNA. This finding suggests that p40 transcription is regulated through a de novo synthesized protein factor(s), whereas the addition of CHX at 2 h after S. aureus activation caused superinduction of the IL-12 p40, IL-12 p35, and TNF-α genes. These results indicate that in human monocytes, the mechanism(s) of IL-10 suppression of both IL-12 p40 and IL-12 p35 genes is primarily seen at the transcriptional level, and that the induction of the IL-12 p40 and p35 genes have different requirements for de novo protein synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription process is crucial to life and the enzyme RNA polymerase (RNAP) is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites. © 2013 Costa et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accumulating evidence demonstrates that chronic inflammation plays an important role in heart hypertrophy and cardiac diseases. However, the fine-tuning of cellular and molecular mechanisms that connect inflammatory process and cardiac diseases is still under investigation. Many reports have demonstrated that the overexpression of the cyclooxygenase-2 (COX-2), a key enzyme in the conversion of arachidonic acid to prostaglandins and other prostanoids, is correlated with inflammatory processes. Increased level of prostaglandin E2 was also found in animal model of left ventricle of hypertrophy. Based on previous observations that demonstrated a regulatory loop between COX-2 and the RNA-binding protein CUGBP2, we studied cellular and molecular mechanisms of a pro-inflammatory stimulus in a cardiac cell to verify if the above two molecules could be correlated with the inflammatory process in the heart. A cellular model of investigation was established and H9c2 was used.We also demonstrated a regulatory connection between COX-2 and CUGBP2 in the cardiac cells. Based on a set of different assays including gene silencing and fluorescence microscopy, we describe a novel function for the RNA-binding protein CUGBP2 in controlling the pro-inflammatory stimulus: subcellular trafficking of messenger molecules to specific cytoplasmic stress granules to maintain homeostasis. © 2013 International Federation for Cell Biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A viral vector system was developed based on a DI-RNA, a sub-viral particle derived from TBSV-BS3-statice. This newly designed vector system was tested for its applicability in protein expression and induction of gene silencing. Two strategies were pursued. The first strategy was replication of the DI-RNA by a transgenically expressed TBSV replicase and the second was the replication by a so called helper virus. It could be demonstrated by northern blot analysis that the replicase, expressed by the transgenic N. benthamiana plant line TR4 or supplied by the helper virus, is able to replicate DI-RNA introduced into the plant cells. Various genes were inserted into different DI constructs in order to study the vector system with regard to protein expression. However, independent of how the replicase was provided no detectable amounts of protein were produced in the plants. Possible reasons for this failure are identified: the lack of systemic movement of the DI-RNA in the transgenic TR4 plants and the occurrence of deletions in the inserted genes in both systems. As a consequence the two strategies were considered unsuitable for protein expression. The DI-RNA vector system was able to induce silencing of transgenes as well as endogenous genes. Several different p19 deficient helper virus constructs were made to evaluate their silencing efficiency in combination with our DI-RNA constructs. However, it was found that our vector system can not compete with other existing VIGS (virus induced gene silencing) systems in this field. Finally, the influence of DI sequences on mRNA stability on transient GUS expression experiments in GUS silenced plants was evaluated. The GUS reporter gene system was found to be unsuitable for distinguishing between expression levels of wild type plants and GUS silenced transgenic plants. The results indicate a positive effect of the DI sequences on the level of protein expression and therefore further research into this area is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Wirksamkeit einer Vakzine ist von vielen Parametern abhängig. Dazu gehören unter anderen: das ausgewählte Antigen, die Formulation in der das Antigen benutzt wird sowie die Applikationsroute. Antigen-kodierende Ribonukleinsäuren (RNA) gilt heutzutage als eine sichere und effiziente Alternative zu traditionellen Impfstoff-Formulierungen, wie Peptiden, rekombinanten Proteinen, viralen Systemen oder DNA basierten Impfstoffen. Bezüglich des Applikationsortes repräsentiert der Lymphknoten ein optimales Milieu für die Interaktion zwischen antigenpräsentierenden Zellen und T-Zellen. Vor diesem Hintergrund war die Zielsetzung dieser Arbeit, ein auf direktem in vivo Transfer von Antigen-kodierender in vitro transkribierter RNA (IVT-RNA) basierendes Impfverfahren zu entwickeln, zu charakterisieren und auf seine anti-tumorale Wirksamkeit zu testen. In der vorliegenden Arbeit konnte gezeigt werden, dass dendritische Zellen (DCs) in vitro hocheffizient mit IVT-RNA transfiziert werden können und eine hohe stimulatorische Kapazität besitzen. Durch Sequenzmodifikation der IVT-RNA konnten wir die Transkriptstabilität und Translationseffizienz erhöhen was zu einer Steigerung der stimulatorischen Kapazität in vivo führte. Darüber hinaus untersuchten wir die Auswirkung der Insertion eines Signalpeptides 5’ sowie einer C-terminalen transmembran- und zytosolischen-Domäne eines MHC-Klasse-I-Moleküls am 3’ der Antigen-kodierenden Sequenz auf die Effizienz der MHC-Klasse-I und -II Präsentation. Wir konnten in vitro und in vivo nachweisen, dass diese Modifikation zu einer gesteigerten, simultanen Stimulation von antigenspezifischen CD4+ und CD8+ T-Zellen führt. Auf der Basis der optimierten Vektorkassetten etablierten wir die intranodale (i.n.) Transfektion von antigenpräsentierenden Zellen in der Maus. Dazu nutzten wir verschiedene Reportersysteme (eGFP-RNA, fluoreszensmarkierte RNA) und konnten zeigen, dass die intranodale Applikation von IVT-RNA zu selektiven Transfektion und Maturation lymphknotenresidenter DCs führt. Zur Untersuchung der immunologischen Effekte wurden in erster Linie auf Influenza-Hemagglutinin-A und Ovalbumin basierende Modellantigensysteme verwendet. Beide Antigene wurden als Antigen-MHC-Fusionskonstrukte genutzt. Als Responderzellen wurden TCR-transgene Lymphozyten verwendet, die MHC-Klasse-I oder -Klasse-II restringierte Epitope des Influenza-Hemagglutinin-A bzw. des Ovalbumin-Proteins erkennen. Wir konnten in vivo zeigen, dass die intranodale Immunisierung mit IVT-RNA zu einer effizienten Stimulation und Expansion von antigenspezifischen CD4+ und CD8+ T-Zellen in einer dosisabhängigen Weise führt. Funktionell konnte gezeigt werden, dass diese T-Zellen Zytokine sezernieren und zur Zytolyse befähigt sind. Wir waren in der Lage durch repetitive i.n. RNA Immunisierung ein ‚Priming’ CD8+ T-Zellen in naiven Mäusen sowohl gegen virale als auch gegen Tumor assoziierte Antigene zu erreichen. Die geprimten T-Zellen waren befähigt eine zytolytische Aktivität gegen mit spezifischem Peptid beladene Targetzellen zu generieren. Darüber hinaus waren wir in der Lage Gedächtnisszellen expandieren zu können. Abschließend konnten wir in Tumormodellen sowohl in prophylaktischen als auch in therapeutischen Experimenten zeigen dass die i.n. RNA Vakzination die Potenz zur Induktion einer anti-tumoralen Immunität besitzt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I microRNA sono una classe di piccole molecole di RNA non codificante che controllano la stabilità di numerosi RNA messaggeri, perciò sono considerati come “master regulator” dell’espressione genica. Ogni tumore è caratterizzato da un profilo di espressione alterato dei microRNA. Il miR-101 è un oncosoppressore represso nei tessuti tumorali ed è candidato come biomarcatore del cancro colon-rettale. È regolato da numerosi eventi fisiologici e patologici, come angiogenesi e carcinogenesi. Gli eventi molecolari coinvolti nella regolazione dell’espressione del miR-101 sono scarsamente conosciuti, poiché è trascritto da due loci genici non caratterizzati. L’obiettivo di questo lavoro è di caratterizzare i geni del miR-101 ed individuarne i regolatori molecolari coinvolti nella cancerogenesi colon-rettale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Therapeutic RNAs, especially siRNAs, are a promising approach for treating diseases like cancer, neurodegenerative disorders and viral infections. Their application, however, is limited due to a lack of safe and efficient delivery systems. Nanosized carriers with the ability to either complex or entrap RNA species are a promising option. rn rn rnSuch a carrier has to meet a lot of requirements, some of which are even partly contradictive. Understanding and controlling the interplay between the different demands would advance a strategic design at an early stage of therapeutic development. rn rn This work is centered around a systematic evaluation of polyplexes, such carriers that are able to complex siRNA due to electrostatic interactions. Six structurally and chemically diverse candidates, poly-L-lysine brushes, block copolymers, cationic peptides, cationic lipids, nanohydrogels, and manganese oxide particles, were tested in a simultaneous fashion. The assays, mostly based on fluorescently labeled siRNA, ranged from the evaluation of polyplex formation and stability to in vitro parameters like cellular uptake and knockdown capability. The analysis from several perspectives offered insight into the interplay between the specifications of one polyplex. Assessing the different carriers under exactly the same experimental conditions also allowed conclusions about favourable traits and starting points for further optimization. This comparative approach also revealed weaknesses of some of the conventional protocols, which were therefore contrasted with alternative methods. In addition, in vitro knockdown assays were optimized and the impact of fluorescently labeled siRNA on knockdown efficiency was assessed. rn rn rn A second class of carriers, which share the ability to entrap siRNA inside their matrix, are briefly addressed. Nanocapsules, dextran particles and liposomes were assessed for basic features like siRNA encapsulation and knockdown capability. rn rn rn rn In an approach towards targeted delivery of RNA, liposomes were endowed with mitochondriotropic tags. Despite successful functionalization, no colocalization between the liposomal cargo and mitochondria was so far observed, which makes further optimization necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of oligodeoxyribonucleotides and oligoribonucleotides containing single and multiple tricyclo(tc)-nucleosides in various arrangements were prepared and the thermal and thermodynamic transition profiles of duplexes with complementary DNA and RNA evaluated. Tc-residues aligned in a non-continuous fashion in an RNA strand significantly decrease affinity to complementary RNA and DNA, mostly as a consequence of a loss of pairing enthalpy DeltaH. Arranging the tc-residues in a continuous fashion rescues T(m) and leads to higher DNA and RNA affinity. Substitution of oligodeoxyribonucleotides in the same way causes much less differences in T(m) when paired to complementary DNA and leads to substantial increases in T(m) when paired to complementary RNA. CD-spectroscopic investigations in combination with molecular dynamics simulations of duplexes with single modifications show that tc-residues in the RNA backbone distinctly influence the conformation of the neighboring nucleotides forcing them into higher energy conformations, while tc-residues in the DNA backbone seem to have negligible influence on the nearest neighbor conformations. These results rationalize the observed affinity differences and are of relevance for the design of tc-DNA containing oligonucleotides for applications in antisense or RNAi therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deregulation of receptor tyrosine kinases (RTKs) is linked to a broad range of cancers, stressing the necessity of studying their regulatory pathways. We and others demonstrated previously that c-Cbl is necessary for the lysosomal degradation of erythropoietin-producing hepatocellular B1 (EphB1) carcinoma and epidermal growth factor receptor (EGFR) RTKs. Moreover, the tumor suppressor phosphatase and tensin homolog (PTEN) was shown to modulate c-Cbl-dependent EGFR degradation. We therefore investigated the involvement of PTEN in EphB1 signaling and degradation. We used PTEN mutants, PTEN, and NHERF1 small interfering RNA in CHO-EphB1 and SW480 cells endogenously expressing EphB1 to delineate EphB1-PTEN interactions. PTEN was constitutively associated with c-Cbl, protecting it from degradation. EphB1 stimulation triggered ∼50% serine-threonine PTEN dephosphorylation and PTEN-Cbl complex disruption, a process requiring PTEN protein phosphatase activity. Both proteins independently translocated to EphB1, with PTEN in association with the scaffold protein NHERF1. Biologically, PTEN lipid phosphatase activity impairs EphB1-dependent cell adhesion and chemotaxis. This study demonstrates for the first time in mammalian cells that the Eph receptor and PTEN associate and influence their signaling. Moreover, it contributes to the emerging concept that PTEN regulates expression of RTKs through modulation of their degradation. Finally, it reveals a new role for PTEN protein phosphatase activity involved in this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear receptors (NR) are ligand-activated transcription factors that regulate different metabolic pathways by influencing the expression of target genes. The current study examined mRNA abundance of NR and NR target genes at different sites of the gastrointestinal tract (GIT) and the liver of healthy dogs (Beagles; n = 11). Samples of GIT and liver were collected postmortem and homogenized, total RNA was extracted and reverse transcribed, and gene expression was quantified by real-time reverse-transcription PCR relative to the mean of 3 housekeeping genes (beta-actin, glyceraldehyde-3-phosphate dehydrogenase, and ubi-quitin). Differences were observed (P < or = 0.05) in the mRNA abundance among stomach (St), duodenum (Du), jejunum (Je), ileum (Il), and colon (Col) for NR [pregnane X receptor (Du, Je > Il, Col > St), peroxisome proliferator-associated receptor gamma (St, Du, Col > Je, Il), constitutive androstane receptor (Je, Du > Il, Col), and retinoid x receptor alpha (Du > Il)] and NR target genes [glutathione-S-transferase A3-3 (Du > Je > St, Il; St > Col), phenol-sulfating phenol sulfotransferase 1A1 (Du, Je > Il, St; Col > St), cytochrome P450 3A12 (Du, Je > St, Il, Col), multiple drug resistance gene 1 (Du, Je, Il, Col > St), multiple drug resistance-associated protein 2 (Je, Du > Il > St, Col), multiple drug resistance-associated protein 3 (Col > St > Il; Du > Je, Il; St > Il), NR corepressor 2 (St > Il, Col), and cytochrome P450 reductase (St, Du, Je > Il, Col)], but not for peroxisome proliferator-associated receptor alpha. Differences (P > 0.05) in mRNA abundance in the liver relative to the GIT were also observed. In conclusion, the presence of numerous differences in expression of NR and NR target genes in different parts of the GIT and in liver of healthy dogs may be associated with location-specific functions and regulation of GIT regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microarrays have established as instrumental for bacterial detection, identification, and genotyping as well as for transcriptomic studies. For gene expression analyses using limited numbers of bacteria (derived from in vivo or ex vivo origin, for example), RNA amplification is often required prior to labeling and hybridization onto microarrays. Evaluation of the fidelity of the amplification methods is crucial for the robustness and reproducibility of microarray results. We report here the first utilization of random primers and the highly processive Phi29 phage polymerase to amplify material for transcription profiling analyses. We compared two commercial amplification methods (GenomiPhi and MessageAmp kits) with direct reverse-transcription as the reference method, focusing on the robustness of mRNA quantification using either microarrays or quantitative RT-PCR. Both amplification methods using either poly-A tailing followed by in vitro transcription, or direct strand displacement polymerase, showed appreciable linearity. Strand displacement technique was particularly affordable compared to in vitro transcription-based (IVT) amplification methods and consisted in a single tube reaction leading to high amplification yields. Real-time measurements using low-, medium-, and highly expressed genes revealed that this simple method provided linear amplification with equivalent results in terms of relative messenger abundance as those obtained by conventional direct reverse-transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of a novel bicyclic thymidine analogue carrying a β-fluoro substituent at C6' (6'F-bcT) has been achieved. Key steps of the synthesis were an electrophilic fluorination/stereospecific hydrogenation sequence of a bicyclo sugar intermediate, followed by an N-iodo-succinimide-induced stereoselective nucleosidation. A corresponding phosphoramidite building block was then prepared and used for oligonucleotide synthesis. Tm measurements of oligonucleotides with single and double incorporations showed a remarkable stabilization of duplex formation particularly with RNA as complement without compromising pairing selectivity. Increases in Tm were in the range of +1-2 °C compared to thymidine and +1-3 °C compared to a standard bc-T residue. Structural investigations of the 6'F-bcT nucleoside by X-ray crystallography showed an in-line arrangement of the fluorine substituent with H6 of thymine, however, with a distance that is relatively long for a nonclassical CF-HC hydrogen bond. In contrast, structural investigations in solution by (1)H and (13)C NMR clearly showed scalar coupling of fluorine with H6 and C6 of the nucleobase, indicating the existence of at least weak electrostatic interactions. On the basis of these results, we put forward the hypothesis that these weak CF-HC6 electrostatic interactions increase duplex stability by orienting and partially freezing torsion angle χ of the 6'F-bcT nucleoside.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein of the hnRNP family, that has been discovered as fused to transcription factors, through chromosomal translocations, in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis (ALS) [1]. To date, FUS/TLS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS/TLS to genome stability control and DNA damage response. In fact, mice lacking FUS/TLS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and in response to double-strand breaks, FUS/TLS gets phosphorylated by the protein kinase ATM [3,4,5]. Furthermore, the inducible depletion of FUS/TLS in a neuroblastoma cell line (SH-SY5Y FUS/TLS TET-off iKD) subjected to genotoxic stress (IR) resulted in an increased phosphorylation of γH2AX respect to control cells, suggesting an higher activation of the DNA damage response. The study aims to investigate the specific role of FUS/TLS in DNA damage response through the characterization of the proteomic profile of SH-SY5Y FUS/TLS iKD cells subjected to DNA damage stress, by mass spectrometry-based quantitative proteomics (e.g. SILAC). Preliminary results of mass spectrometric identification of FUS/TLS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS/TLS protein, highlighted the interactions with several proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS/TLS is involved in this pathway, even thou its exact role still need to be addressed.