823 resultados para MECHANICAL PROPERTIES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Designing degradable hydrogels is complicated by the structural and temporal complexities of the gel and evolving tissue. A major challenge is to create scaffolds with sufficient mechanical properties to restore initial function while simultaneously controlling temporal changes in the gel structure to facilitate tissue formation. Poly(ethylene glycol) was used in this work, to form biodegradable poly(ethylene glycol)-based hydrogels with hydrolyzable poly-l-lactide segments in the backbone. Non-degradable poly(ethylene glycol) was also introduced in the formulation to obtain control of the degradation profile that encompasses cell growth and new tissue formation. The dependence on polymer composition was observed by higher degradation profiles and decreased mechanical properties as the content of degradable segments was increased in the formulation. Based on in vitro tests, no toxicity of extracts or biomaterial in direct contact with human adipose tissue stem cells was observed, and the ultraviolet light treatment did not affect the proliferation capacity of the cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2XXX and 7XXX series aluminium alloys have been the accepted materials for airframe construction for many decades. However, only minor improvements in properties have been possible by the development of these alloys since the early 1970's. The constant need to reduce weight in aircraft has therefore led to a resurgence in the research for higher performance aluminium alloys. The reason for this investigation was to evaluate possible alternatives for the existing conventional aluminium alloy 2014 for aircraft wheel applications. Three new technologies in alloy development were considered: a metal matrix composite, an aluminium-lithium alloy and a powder metallurgical alloy. The basic mechanical properties of these advanced materials have already been established to an extent, but their fatigue behaviour has yet to be fully understood. The purpose of this work was to investigate the fatigue properties of the materials concerned, in both air and an aerated 3.5% NaCl solution, and compare these properties to 2014-T6. As well as the basic mechanical properties, fatigue crack propagation data is presented for all of the materials concerned. Additionally, fatigue crack initiation data is presented for the aluminium-lithium alloy and 2014. The D.C. electrical potential method was used to monitor crack growth. Of the materials investigated, the most promising was the aluminium-lithium alloy. However, short transverse properties need to be increased and the commercial cost of the material needs to be decreased before it can be considered as a direct replacement for 2014 for aircraft structural applications. It was considered that the cost of the powder metallurgical alloy would limit its further use. The metal matrix composite material proved to be unsuitable for most ambient temperature applications

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study demonstrates a novel approach to characterizing hydrated bone's viscoelastic behavior at lamellar length scales using dynamic indentation techniques. We studied the submicron-level viscoelastic response of bone tissue from two different inbred mouse strains, A/J and B6, with known differences in whole bone and tissue-level mechanical properties. Our results show that bone having a higher collagen content or a lower mineral-to-matrix ratio demonstrates a trend towards a larger viscoelastic response. When normalized for anatomical location relative to biological growth patterns in the antero-medial (AM) cortex, bone tissue from B6 femora, known to have a lower mineral-to-matrix ratio, is shown to exhibit a significantly higher viscoelastic response compared to A/J tissue. Newer bone regions with a higher collagen content (closer to the endosteal edge of the AM cortex) showed a trend towards a larger viscoelastic response. Our study demonstrates the feasibility of this technique for analyzing local composition-property relationships in bone. Further, this technique of viscoelastic nanoindentation mapping of the bone surface at these submicron length scales is shown to be highly advantageous in studying subsurface features, such as porosity, of wet hydrated biological specimens, which are difficult to identify using other methods. © 2010 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Salt formation has extensively been studied as a strategy to improve drug solubility but it has not been explored as a strategy to improve mechanical properties. A better understanding of which factors of the solid state can have an influence in the mechanical properties of pharmaceutical powders can help to optimise and reduce cost of tablet manufacturing. The aim of this study was to form different series of amine salts of flurbiprofen, gemfibrozil and diclofenac and to establish predictive relationships between architectural characteristics and physicochemical and mechanical properties of the salts. For this purpose, three different carboxylic acid drugs were selected: flurbiprofen, gemfibrozil and diclofenac, similar in size but varying in flexibility and shape and three different series of counterions were also chosen: one with increasing bulk and no hydroxyl groups to limit the hydrogen bonding potential; a second one with increasing number of hydroxyl groups and finally a third series, related to the latter in number of hydroxyl groups but with different molecular shape and flexibility. Physico-chemical characterization was performed (DSC, TGA, solubility, intrinsic dissolution rate, particle size, true density) and mechanical properties measured using a compaction replicator. Strained molecular conformations produce weaker compacts as they have higher energy than preferred conformations that usually lie close to energy minimums and oppose plastic deformation. It was observed that slip planes, which correspond to regions of weakest interaction between the planes, were associated with improved plasticity and stronger compacts. Apart from hydrogen bonds, profuse van der Waals forces can result in ineffective slip planes. Salts displaying two-dimensional densely hydrogen bonded layers produced stronger compacts than salts showing one-dimensional networks of non-bonded columns, probably by reducing the attachment energy between layers. When hydrogen bonds are created intramolecularly, it is possible that the mechanical properties are compromised as they do not contribute so much to create twodimensional densely bonded layers and they can force molecules into strained conformations. Some types of hydrogen bonding network may be associated with improved mechanical properties, such as type II, or R (10) 3 4 using graph-set notation, versus type III, or R (12) 4 8 , columns. This work clearly demonstrates the potential of investigating crystal structure-mechanical property relationship in pharmaceutical materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanical properties and wear behaviour of B(SiC) fibre-reinforced metal matrix composites (MMCs) and aluminium alloy (2014) produced by metal infiltration technique were determined. Tensile tests were peliormed at different conditions on both the alloy matrix and its composite, and the tensile fracture surfaces were also examined by Scanning Electron Microscopy (SEM). Dry wear of the composite materials sliding on hardened steel was studied using a pin-on-disc type machine. The effect of fibre orientation on wear rate was studied to provide wear resistance engineering data on the MMCs. Tests were carried out with the wear surface sliding direction set normal, parallel and anti-parallel to the fibre axis. Experiments were perfonned for sliding speeds of 0.6, 1.0 and 1.6 m/s for a load range from 12 N to 60 N. A number of sensitive techniques were used to examine worn surface and debris, i.e: Scanning Electron Microscopy (SEM), Backscattered Electron Microscopy (BSEM) and X-ray Photoelectron Spectroscopy (XPS). Finally, the effect of fibre orientation on the wear rate of the Borsic-reinforced plastic matrix composites (PMCs) produced by hot pressing technique was also investigated under identical test conditions. It was found that the composite had a markedly increased tensile strength compared with the matrix. The wear results also showed that the composite exhibited extremely low wear rates compared to the matrix material and the wear rate increased with increasing sliding speed and normal load. The effect of fibre orientation was marked, the lowest wear rates were obtained by arranging the fibre perpendicular to the sliding surface, while the highest wear was obtained for the parallel orientation. The coefficient of friction was found to be lowest in the parallel orientation than the others. Wear of PMCs were influenced to the greatest extent by these test parameters although similar findings were obtained for both composites. Based on the results of analyses using SEM, BSED and XPS, possible wear mechanisms are suggested to explain the wear of these materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of elastic anisotropy on nanoindentation measurements in human tibial cortical bone. Nanoindentation was conducted in 12 different directions in three principal planes for both osteonic and interstitial lamellae. The experimental indentation modulus was found to vary with indentation direction and showed obvious anisotropy (oneway analysis of variance test, P < 0.0001). Because experimental indentation modulus in a specific direction is determined by all of the elastic constants of cortical bone, a complex theoretical model is required to analyze the experimental results. A recently developed analysis of indentation for the properties of anisotropic materials was used to quantitatively predict indentation modulus by using the stiffness matrix of human tibial cortical bone, which was obtained from previous ultrasound studies. After allowing for the effects of specimen preparation (dehydrated specimens in nanoindentation tests vs. moist specimens in ultrasound tests) and the structural properties of bone (different microcomponents with different mechanical properties), there were no statistically significant differences between the corrected experimental indentation modulus (Mexp) values and corresponding predicted indentation modulus (Mpre) values (two-tailed unpaired t-test, P < 0.5). The variation of Mpre values was found to exhibit the same trends as the corrected Mexp data. These results show that the effects of anisotropy on nanoindentation measurements can be quantitatively evaluated. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New sol-gel functionalized poly-ethylene glycol (PEGM)/SiO2-CaO hybrids were prepared with interpenetrating networks of silica and PEGM through the formation of Si-O-Si bonds. Bioactive and mechanical properties were investigated for a series of hybrids containing varying organic/inorganic ratios and PEG molecular weights. In contrast to the unmodified PEG/SiO2-CaO hybrids, which rapidly dissolved and crumbled, the epoxy modified hybrids exhibited good mechanical properties and bioactivity. The compressive strength and Young's modulus were greater for higher molecular weight PEGM hybrids (PEGM600 compared to PEGM300). Compressive strengths of 138 MPa and 81 MPa were found for the 50: 50 and 60: 40 organic/inorganic hybrid samples respectively, which are comparable with cortical bone. Young's modulus values of ∼800 MPa were obtained for the 50 : 50 and 60 : 40 organic/inorganic hybrids. Bioactivity tests were conducted by immersing the hybrids into simulated body fluid and observing the formation of apatite. Apatite formation was observed within 24 hours of immersion. PEGM600 hybrids showed enhanced apatite formation compared to PEGM300 hybrids. Increased apatite formation was observed with increasing organic/inorganic ratio. 70 : 30 and 60 : 40 hybrids exhibited the greatest apatite formation. All PEGM hybrids samples had good cell viability and proliferation. The 60 : 40 PEGM600 hybrids displayed the optimal combination of bioactivity and mechanical strength. The bioactivity of these hybrids, combined with the enhanced mechanical properties, demonstrate that these materials have significant potential for bone regeneration applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This chapter deals with the physicochemical aspects of structure-property relationships in synthetic hydrogels, with particular reference to their application in optometry and ophthalmology. It demonstrates the ways in which the amount of water contained in the hydrogel network can be manipulated by changes in copolymer composition and illustrates the advantages and limitations imposed by use of water as a means of influencing surface, transport and mechanical properties of the gel. The chapter then illustrates how this basic understanding has formed a platform for the development of synthetic interpenetrating networks and macroporous materials, and of hybrids of natural and synthetic hydrogels. The behaviour of these more complex systems is not so centrally dominated by the equilibrium water content as is the case with homogeneous synthetic hydrogels, thus providing advantageous ways of extending the properties and applications of these interesting materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the "fishbone", the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 μm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent "barcode" implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Advances in multiscale material modeling of structural concrete have created an upsurge of interest in the accurate evaluation of mechanical properties and volume fractions of its nano constituents. The task is accomplished by analyzing the response of a material to indentation, obtained as an outcome of a nanoindentation experiment, using a procedure called the Oliver and Pharr (OP) method. Despite its widespread use, the accuracy of this method is often questioned when it is applied to the data from heterogeneous materials or from the materials that show pile-up and sink-in during indentation, which necessitates the development of an alternative method. ^ In this study, a model is developed within the framework defined by contact mechanics to compute the nanomechanical properties of a material from its indentation response. Unlike the OP method, indentation energies are employed in the form of dimensionless constants to evaluate model parameters. Analysis of the load-displacement data pertaining to a wide range of materials revealed that the energy constants may be used to determine the indenter tip bluntness, hardness and initial unloading stiffness of the material. The proposed model has two main advantages: (1) it does not require the computation of the contact area, a source of error in the existing method; and (2) it incorporates the effect of peak indentation load, dwelling period and indenter tip bluntness on the measured mechanical properties explicitly. ^ Indentation tests are also carried out on samples from cement paste to validate the energy based model developed herein by determining the elastic modulus and hardness of different phases of the paste. As a consequence, it has been found that the model computes the mechanical properties in close agreement with that obtained by the OP method; a discrepancy, though insignificant, is observed more in the case of C-S-H than in the anhydrous phase. Nevertheless, the proposed method is computationally efficient, and thus it is highly suitable when the grid indentation technique is required to be performed. In addition, several empirical relations are developed that are found to be crucial in understanding the nanomechanical behavior of cementitious materials.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synthetic tri-leaflet heart valves generally fail in the long-term use (more than 10 years). Tearing and calcification of the leaflets usually cause failure of these valves as a consequence of high tensile and bending stresses borne on the material. The primary purpose of this study was to explore the possibilities of a new polymer composite to be used as synthetic tri-leaflet heart valve material. This composite was comprised of polystyrene-polyisobutylene-polystyrene (Quatromer), a proprietary polymer, embedded with continuous polypropylene (PP) fibers. Quatromer had been found to be less likely to degrade in vivo than polyurethane. Moreover, it was postulated that a decrease in tears and perforations might result from fiber-reinforced leaflets reducing high stresses on the leaflets. The static and dynamic mechanical properties of the Quatromer/PP composite were compared with those of an implant-approved polyurethane (PU) for cardiovascular applications. Results show that the reinforcement of Quatromer with PP fibers improves both its static and dynamic properties as compared to the PU. Hence, this composite has the potential to be a more suitable material for synthetic tri-leaflet heart valves.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the “fishbone”, the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 µm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent “barcode” implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rotomolded containers for solvents and hydrocarbons require the use of high-permeability resins such as polyamide (PA). The published studies with this material are very scarce. In this work, a commercial grade of PA11 was rotational-molded using different processing temperatures and characterized with a range of techniques. The study aims at investigating the influence of the processing conditions on the microstructure and properties of molded parts. The results showed that the spherulitic morphology and the mechanical properties are affected by the processing temperature, the optimum processing range being between 220°C and 240°C. Overheating causes a decrease of the impact strength and a severe increase in the formation of pinholes at the outer surface due to polymer degradation and formation of volatile products. The thermo-oxidation reactions occurring at the inner surface of the samples result in the formation of products that absorb in the UV and visible light regions and cause the microhardness and the melt viscosity of the material to increase. The extent and severity of the degradation at the inner surface may be easily assessed by fluorescence microscopy. © 2008 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of two types of graphene nanoplatelets (GNPs) on the physico-mechanical properties of linear low-density polyethylene (LLDPE) was investigated. The addition of these two types of GNPs – designated as grades C and M – enhanced the thermal conductivity of the LLDPE, with a more pronounced improvement resulting from the M-GNPs compared to C-GNPs. Improvement in electrical conductivity and decomposition temperature was also noticed with the addition of GNPs. In contrast to the thermal conductivity, C-GNPs resulted in greater improvements in the electrical conductivity and thermal decomposition temperature. These differences can be attributed to differences in the surface area and dispersion of the two types of GNPs.