929 resultados para MAIZE STARCH


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root cortical and stelar protoplasts were isolated from maize (Zea mays L.) plants that were either well watered or water stressed, and the patch-clamp technique was used to investigate their plasma membrane K+ channel activity. In the root cortex water stress did not significantly affect inward- or outward-rectifying K+ conductances relative to those observed in well-watered plants. In contrast, water stress significantly reduced the magnitude of the outward-rectifying K+ current in the root stele but had little effect on the inward-rectifying K+ current. Pretreating well-watered plants with abscisic acid also significantly affected K+ currents in a way that was consistent with abscisic acid mediating, at least in part, the response of roots to water stress. It is proposed that the K+ channels underlying the K+ currents in the root stelar cells represent pathways that allow K+ exchange between the root symplasm and xylem apoplast. It is suggested that the regulation of K+ channel activity in the root in response to water stress could be part of an important adaptation of the plant to survive drying soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to determine the role of acidic ribosomal protein (ARP) phosphorylation in translation. Ribosomes (Rbs) from germinated maize (Zea mays L.) axes had four ARP bands within 4.2 to 4.5 isoelectric points when analyzed by isoelectric focusing. Two of these bands disappeared after alkaline phosphatase hydrolysis. During germination a progressive change from nonphosphorylated (0 h) to phosphorylated ARP (24 h) forms was observed in the Rbs; a free cytoplasmic pool of nonphosphorylated ARPs was also identified by immunoblot and isoelectric focusing experiments. De novo ARP synthesis initiated very slowly early in germination, whereas ARP phosphorylation occurred rapidly within this period. ARP-phosphorylated versus ARP-nonphosphorylated Rbs were tested in an in vitro reticulocyte lysate translation system. Greater in vitro mRNA translation rates were demonstrated for the ARP-phosphorylated Rbs than for the non-ARP-phosphorylated ones. Rapamycin application to maize axes strongly inhibited S6 ribosomal protein phosphorylation, but did not interfere with the ARP phosphorylation reaction. We conclude that ARP phosphorylation does not depend on ARP synthesis or on ARP assembly into Rbs. Rather, this process seems to be part of a translational regulation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bronze (bz) locus exhibits the highest rate of recombination of any gene in higher plants. To investigate the possible basis of this high rate of recombination, we have analyzed the physical organization of the region around the bz locus. Two adjacent bacterial artificial chromosome clones, comprising a 240-kb contig centered around the Bz-McC allele, were isolated, and 60 kb of contiguous DNA spanning the two bacterial artificial chromosome clones was sequenced. We find that the bz locus lies in an unusually gene-rich region of the maize genome. Ten genes, at least eight of which are shown to be transcribed, are contained in a 32-kb stretch of DNA that is uninterrupted by retrotransposons. We have isolated nearly full length cDNAs corresponding to the five proximal genes in the cluster. The average intertranscript distance between them is just 1 kb, revealing a surprisingly compact packaging of adjacent genes in this part of the genome. At least 11 small insertions, including several previously described miniature inverted repeat transposable elements, were detected in the introns and 3′ untranslated regions of genes and between genes. The gene-rich region is flanked at the proximal and distal ends by retrotransposon blocks. Thus, the maize genome appears to have scattered regions of high gene density similar to those found in other plants. The unusually high rate of intragenic recombination seen in bz may be related to the very high gene density of the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interpretation of quantitative trait locus (QTL) studies of agronomic traits is limited by lack of knowledge of biochemical pathways leading to trait expression. To more fully elucidate the biological significance of detected QTL, we chose a trait that is the product of a well-characterized pathway, namely the concentration of maysin, a C-glycosyl flavone, in silks of maize, Zea mays L. Maysin is a host-plant resistance factor against the corn earworm, Helicoverpa zea (Boddie). We determined silk maysin concentrations and restriction fragment length polymorphism genotypes at flavonoid pathway loci or linked markers for 285 F2 plants derived from the cross of lines GT114 and GT119. Single-factor analysis of variance indicated that the p1 region on chromosome 1 accounted for 58.0% of the phenotypic variance and showed additive gene action. The p1 locus is a transcription activator for portions of the flavonoid pathway. A second QTL, represented by marker umc 105a near the brown pericarp1 locus on chromosome 9, accounted for 10.8% of the variance. Gene action of this region was dominant for low maysin, but was only expressed in the presence of a functional p1 allele. The model explaining the greatest proportion of phenotypic variance (75.9%) included p1, umc105a, umc166b (chromosome 1), r1 (chromosome 10), and two epistatic interaction terms, p1 x umc105a and p1 x r1. Our results provide evidence that regulatory loci have a central role and that there is a complex interplay among different branches of the flavonoid pathway in the expression of this trait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoblastoma (RB-1) is a tumor suppressor gene that encodes a 105-kDa nuclear phosphoprotein. To date, RB genes have been isolated only from metazoans. We have isolated a cDNA from maize endosperm whose predicted protein product (ZmRb) shows homology to the "pocket" A and B domains of the Rb protein family. We found ZmRb behaves as a pocket protein based on its ability to specifically interact with oncoproteins encoded by DNA tumor viruses (E7, T-Ag, E1A). ZmRb can interact in vitro and in vivo with the replication-associated protein, RepA, encoded by the wheat dwarf virus. The maize Rb-related protein undergoes changes in level and phosphorylation state concomitant with endoreduplication, and it is phosphorylated in vitro by an S-phase kinase from endoreduplicating endosperm cells. Together, our results suggest that ZmRb is a representative of the pocket protein family and may play a role in cell cycle progression. Moreover, certain plant monopartite geminiviruses may operate similarly to mammalian DNA viruses, by targeting and inactivating the retinoblastoma protein, which otherwise induces G1 arrest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Abnormal chromosome 10 (Ab10) in maize causes normally-quiescent blocks of heterochromatin called knobs to function as meiotic centromeres. Under these circumstances genetic markers associated with knobs exhibit meiotic drive, i.e., they are preferentially transmitted to progeny. Here we describe a mutation called suppressor of meiotic drive (smd1) that partially suppresses meiotic drive, and demonstrate that smd1 causes a quantitative reduction in the mobility of knobs on the meiotic spindle. We conclude that Smd1 encodes a product that is necessary for the activation of ectopic centromeres, and that meiotic drive occurs as a consequence of the resulting change in chromosome movement. As a genetic system, Ab10 offers a new and powerful approach for analyzing centromere/kinetochore function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The R-sc gene of maize is a member of the R gene family of transcriptional activators that regulate anthocyanin biosynthesis. A derivative of R-sc, r-m9 conditions a reduced level of aleurone pigmentation due to the presence of a 2.1-kb Ds insertion near the 3' end of the coding region. Excision of Ds from r-m9 leaves a 7-bp insertion in the darker but still mutant v24 derivative. Both the 7-bp insertion in v24 and the 2.1-kb Ds in r-m9 are predicted to truncate their respective R proteins proximal to the carboxyl terminus, which was shown previously to contain one of three nuclear localization sequences. We find that the reduced expression of r-m9 and v24 are not due to mRNA or protein instability, but most likely reflect the inefficient localization of truncated R proteins to the nucleus. To our knowledge this is the first example of a transposable element insertion that alters gene expression by affecting nuclear localization. In addition, our data indicate that the carboxyl terminus of the R protein is far more important than previously suspected and illustrates the utility of natural mutations for defining functional domains in proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pollen development, a dramatic reorganization of the actin cytoskeleton takes place during the passage of the pollen grain into dormancy and on activation of pollen tube growth. A role for actin-binding proteins is implicated and we report here the identification of a small gene family in maize that encodes actin depolymerizing factor (ADF)-like proteins. The ADF group of proteins are believed to control actin polymerization and depolymerization in response to both intracellular and extracellular signals. Two of the maize genes ZmABP1 and ZmABP2 are expressed specifically in pollen and germinating pollen suggesting that the protein products may be involved in pollen actin reorganization. A third gene, ZmABP3, encodes a protein only 56% and 58% identical to ZmABP1 and ZmABP2, respectively, and its expression is suppressed in pollen and germinated pollen. The fundamental biochemical characteristics of the ZmABP proteins has been elucidated using bacterially expressed ZmABP3 protein. This has the ability to bind monomeric actin (G-actin) and filamentous actin (F-actin). Moreover, it decreases the viscosity of polymerized actin solutions consistent with an ability to depolymerize filaments. These biochemical characteristics, taken together with the sequence comparisons, support the inclusion of the ZmABP proteins in the ADF group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dihydrodipicolinate synthase (DHPS; EC 4.2.1.52) catalyzes the first step in biosynthesis of lysine in plants and bacteria. DHPS in plants is highly sensitive to end-product inhibition by lysine and, therefore, has an important role in regulating metabolite flux into lysine. To better understand the feedback inhibition properties of the plant enzyme, we transformed a maize cDNA for lysine-sensitive DHPS into an Escherichia coli strain lacking DHPS activity. Cells were mutagenized with ethylmethanesulfonate, and potential DHPS mutants were selected by growth on minimal medium containing the inhibitory lysine analogue S-2-aminoethyl-L-cysteine. DHPS assays identified surviving colonies expressing lysine-insensitive DHPS activity. Ten single-base-pair mutations were identified in the maize DHPS cDNA sequence; these mutations were specific to one of three amino acid residues (amino acids 157, 162, and 166) localized within a short region of the polypeptide. No other mutations were present in the remaining DHPS cDNA sequence, indicating that altering only one of the three residues suffices to eliminate lysine inhibition of maize DHPS. Identification of these specific mutations that change the highly sensitive maize DHPS to a lysine-insensitive isoform will help resolve the lysine-binding mechanism and the resultant conformational changes involved in inhibition of DHPS activity. The plant-derived mutant DHPS genes may also be used to improve nutritional quality of maize or other cereal grains that have inadequate lysine content when fed to animals such as poultry, swine, or humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaves of the C4 plant maize have two major types of photosynthetic cells: a ring of five large bundle sheath cells (BSC) surrounds each vascular bundle and smaller mesophyll cells (MC) lie between the cylinders of bundle sheath cells. The enzyme ribulose bisphosphate carboxylase/oxygenase is encoded by nuclear rbcS and chloroplast rbcL genes. It is not present in MC but is abundant in adjacent BSC of green leaves. As reported previously, the separate regions of rbcS-m3, which are required for stimulating transcription of the gene in BSC and for suppressing expression of reporter genes in MC, were identified by an in situ expression assay; expression was not suppressed in MC until after leaves of dark-grown seedlings had been illuminated for 24 h. Now we have found that transient expression of rbcS-m3 reporter genes is stimulated in BSC via a red/far-red reversible phytochrome photoperception and signal transduction system but that blue light is required for suppressing rbcS-m3 reporter gene expression in MC. Blue light is also required for the suppression system to develop in MC. Thus, the maize gene rbcS-m3 contains certain sequences that are responsive to a phytochrome photoperception and signal transduction system and other regions that respond to a UVA/blue light photoperception and signal transduction system. Various models of "coaction" of plant photoreceptors have been advanced; these observations show the basis for one type of coaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous investigations from our laboratory showed that the genomes of plants, like those of vertebrates, are mosaics of isochores, i.e., of very long DNA segments that are compositionally homogeneous and that can be subdivided into a small number of families characterized by different GC levels (GC is the mole fraction of guanine+cytosine). Compositional DNA fractions corresponding to different isochore families were used to investigate, by hybridization with appropriate probes, the gene distribution in vertebrate genomes. Here we report such a study on the genome of a plant, maize. The gene distribution that we found is most striking, in that almost all genes are present in isochores covering an extremely narrow (1-2%) GC range and only representing 10-20% of the genome. This gene distribution, which seems to characterize other Gramineae as well, is remarkably different from the gene distribution previously found in vertebrate genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correspondence between the transversion/transition ratio and the neighboring base composition in chloroplast DNA is examined. For 18 noncoding regions of the chloroplast genome, alignments between rice (Oryza sativa) and maize (Zea mays) were generated by two different methods. Difficulties of aligning noncoding DNA are discussed, and the alignments are analyzed in a manner that reduces alignment artifacts. Sequence divergence is < 10%, so multiple substitutions at a site are assumed to be rare. Observed substitutions were analyzed with respect to the A+T content of the two immediately flanking bases. It is shown that as this content increases, the proportion of transversions also increases. When both the 5'- and 3'-flanking nucleotides are G or C (A+T content of 0), only 25% of the observed substitutions are transversions. However, when both the 5'- and 3'-flanking nucleotides are A or T (A+T content of 2), 57% of the observed substitutions are transversions. Therefore, the influence of flanking base composition on substitutions, previously reported for a single noncoding region, is a general feature of the chloroplast genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lysine is the most limiting essential amino acid in cereals, and for many years plant breeders have attempted to increase its concentration to improve the nutritional quality of these grains. The opaque2 mutation in maize doubles the lysine content in the endosperm, but the mechanism by which this occurs is unknown. We show that elongation factor 1 alpha (EF-1 alpha) is overexpressed in opaque2 endosperm compared with its normal counterpart and that there is a highly significant correlation between EF-1 alpha concentration and the total lysine content of the endosperm. This relationship is also true for two other cereals, sorghum and barley. It appears that genetic selection for genotypes with a high concentration of EF-1 alpha can significantly improve the nutritional quality of maize and other cereals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maize floury 2 (fl2) mutation enhances the lysine content of the grain, but the soft texture of the endosperm makes it unsuitable for commercial production. The mutant phenotype is linked with the appearance of a 24-kDa alpha-zein protein and increased synthesis of binding protein, both of which are associated with irregularly shaped protein bodies. We have cloned the gene encoding the 24-kDa protein and show that it is expressed as a 22-kDa alpha-zein with an uncleaved signal peptide. Comparison of the deduced N-terminal amino acid sequence of the 24-kDa alpha-zein protein with other alpha-zeins revealed an alanine to valine substitution at the C-terminal position of the signal peptide, a histidine insertion within the seventh alpha-helical repeat, and an alanine to threonine substitution with the same alpha-helical repeat of the protein. Structural defects associated with this alpha-zein explain many of the phenotypic effects of the fl2 mutation.