928 resultados para MACROSCOPIC QUANTUM PHENOMENA IN MAGNETIC SYSTEMS


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an architecture for pervasive computing which utilizes context information to provide adaptations based on vertical handovers (handovers between heterogeneous networks) while supporting application Quality of Service (QoS). The future of mobile computing will see an increase in ubiquitous network connectivity which allows users to roam freely between heterogeneous networks. One of the requirements for pervasive computing is to adapt computing applications or their environment if current applications can no longer be provided with the requested QoS. One of possible adaptations is a vertical handover to a different network. Vertical handover operations include changing network interfaces on a single device or changes between different devices. Such handovers should be performed with minimal user distraction and minimal violation of communication QoS for user applications. The solution utilises context information regarding user devices, user location, application requirements, and network environment. The paper shows how vertical handover adaptations are incorporated into the whole infrastructure of a pervasive system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pervasive systems need to be context aware and need to adapt to context changes, including network disconnections and changes in network Quality of Service (QoS). Vertical handover (handover between heterogeneous networks) is one of possible adaptation methods. It allows users to roam freely between heterogeneous networks while maintaining continuity of their applications. This paper proposes a vertical handover approach suitable for multimedia applications in pervasive systems. It describes the adaptability decision making process which uses vertical handovers to support users mobility and provision of QoS suitable for users’ applications. The process evaluates context information regarding user devices, User location, network environment, and user perceived QoS of applications.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.