950 resultados para M2 Segment
Resumo:
The influenza A virus pandemic of 1918–1919 resulted in an estimated 20–40 million deaths worldwide. The hemagglutinin and neuraminidase sequences of the 1918 virus were previously determined. We here report the sequence of the A/Brevig Mission/1/18 (H1N1) virus nonstructural (NS) segment encoding two proteins, NS1 and nuclear export protein. Phylogenetically, these genes appear to be close to the common ancestor of subsequent human and classical swine strain NS genes. Recently, the influenza A virus NS1 protein was shown to be a type I IFN antagonist that plays an important role in viral pathogenesis. By using the recently developed technique of generating influenza A viruses entirely from cloned cDNAs, the hypothesis that the 1918 virus NS1 gene played a role in virulence was tested in a mouse model. In a BSL3+ laboratory, viruses were generated that possessed either the 1918 NS1 gene alone or the entire 1918 NS segment in a background of influenza A/WSN/33 (H1N1), a mouse-adapted virus derived from a human influenza strain first isolated in 1933. These 1918 NS viruses replicated well in tissue culture but were attenuated in mice as compared with the isogenic control viruses. This attenuation in mice may be related to the human origin of the 1918 NS1 gene. These results suggest that interaction of the NS1 protein with host-cell factors plays a significant role in viral pathogenesis.
Resumo:
Excitotoxicity, resulting from sustained activation of glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype, is considered to play a causative role in the etiology of ischemic stroke and several neurodegenerative diseases. The NMDA receptor is therefore a target for the development of neuroprotective agents. Here, we identify an N-benzylated triamine (denoted as NBTA) as a highly selective and potent NMDA-receptor channel blocker selected by screening a reduced dipeptidomimetic synthetic combinatorial library. NBTA blocks recombinant NMDA receptors expressed in Xenopus laevis oocytes with a mean IC50 of 80 nM; in contrast, it does not block GluR1, a glutamate receptor of the non-NMDA subtype. The blocking activity of NBTA on NMDA receptors exhibits the characteristics of an open-channel blocker: (i) no competition with agonists, (ii) voltage dependence, and (iii) use dependence. Significantly, NBTA protects rodent hippocampal neurons from NMDA receptor, but not kainate receptor-mediated excitotoxic cell death, in agreement with its selective action on the corresponding recombinant receptors. Mutagenesis data indicate that the N site, a key asparagine on the M2 transmembrane segment of the NR1 subunit, is the main determinant of the blocker action. The results highlight the potential of this compound as a neuroprotectant.
Resumo:
The synovial membrane (SM) of affected joints in ankylosing spondylitis (AS) is infiltrated by germinal center-like aggregates (foci) of lymphocytes similar to rheumatoid arthritis (RA). We characterized the rearranged heavy chain variable segment (VH) genes in the SM for gene usage and the mutational pattern to elucidate the B lymphocyte involvement in AS.
Resumo:
Reovirus genome segment S1 encodes protein σ1, which is the receptor binding protein, modulates tissue tropism, and specifies the nature of the antiviral immune response. It makes up less than 2% of reovirus particles and is synthesized in very small amounts in infected cells. Any antiviral strategy aimed at reducing specifically the expression of this genome segment should, in principle, reduce the infectivity of the virus. To test this hypothesis, we have assembled two hammer-head motif-containing ribozymes (Rzs) targeted to cleave at the conserved B and C domains of the reovirus s1 RNA. Protein-independent but Mg2+-dependent sequence-specific cleavage of s1 RNA was achieved by both the Rzs in trans. Cells that transiently express these Rzs, when challenged with reovirus, were protected against the cytopathic effects caused by the virus. This protection correlated with the specific intracellular reduction of s1 transcripts that was due to their cleavage by the Rzs. Rz-treated cells that were challenged with reovirus showed almost complete disappearance of protein σ1 without significantly altering the levels of the other reovirus structural proteins. Thus, Rzs, besides acting as antiviral agents, could be exploited as biological tools to delineate specific functions of target genes.
Resumo:
N-type Ca2+ channels can be inhibited by neurotransmitter-induced release of G protein βγ subunits. Two isoforms of Cav2.2 α1 subunits of N-type calcium channels from rat brain (Cav2.2a and Cav2.2b; initially termed rbB-I and rbB-II) have different functional properties. Unmodulated Cav2.2b channels are in an easily activated “willing” (W) state with fast activation kinetics and no prepulse facilitation. Activating G proteins shifts Cav2.2b channels to a difficult to activate “reluctant” (R) state with slow activation kinetics; they can be returned to the W state by strong depolarization resulting in prepulse facilitation. This contrasts with Cav2.2a channels, which are tonically in the R state and exhibit strong prepulse facilitation. Activating or inhibiting G proteins has no effect. Thus, the R state of Cav2.2a and its reversal by prepulse facilitation are intrinsic to the channel and independent of G protein modulation. Mutating G177 in segment IS3 of Cav2.2b to E as in Cav2.2a converts Cav2.2b tonically to the R state, insensitive to further G protein modulation. The converse substitution in Cav2.2a, E177G, converts it to the W state and restores G protein modulation. We propose that negatively charged E177 in IS3 interacts with a positive charge in the IS4 voltage sensor when the channel is closed and produces the R state of Cav2.2a by a voltage sensor-trapping mechanism. G protein βγ subunits may produce reluctant channels by a similar molecular mechanism.
Resumo:
We have used a yeast two-hybrid approach to uncover protein interactions involving the D2-like subfamily of dopamine receptors. Using the third intracellular loop of the D2S and D3 dopamine receptors as bait to screen a human brain cDNA library, we identified filamin A (FLN-A) as a protein that interacts with both the D2 and D3 subtypes. The interaction with FLN-A was specific for the D2 and D3 receptors and was independently confirmed in pull-down and coimmunoprecipitation experiments. Deletion mapping localized the dopamine receptor–FLN-A interaction to the N-terminal segment of the D2 and D3 dopamine receptors and to repeat 19 of FLN-A. In cultures of dissociated rat striatum, FLN-A and D2 receptors colocalized throughout neuronal somata and processes as well as in astrocytes. Expression of D2 dopamine receptors in FLN-A-deficient M2 melanoma cells resulted in predominant intracellular localization of the D2 receptors, whereas in FLN-A-reconstituted cells, the D2 receptor was predominantly localized at the plasma membrane. These results suggest that FLN-A may be required for proper cell surface expression of the D2 dopamine receptors. Association of D2 and D3 dopamine receptors with FLN-A provides a mechanism whereby specific dopamine receptor subtypes may be functionally linked to downstream signaling components via the actin cytoskeleton.
Resumo:
In this paper, a new way to think about, and to construct, pairwise as well as multiple alignments of DNA and protein sequences is proposed. Rather than forcing alignments to either align single residues or to introduce gaps by defining an alignment as a path running right from the source up to the sink in the associated dot-matrix diagram, we propose to consider alignments as consistent equivalence relations defined on the set of all positions occurring in all sequences under consideration. We also propose constructing alignments from whole segments exhibiting highly significant overall similarity rather than by aligning individual residues. Consequently, we present an alignment algorithm that (i) is based on segment-to-segment comparison instead of the commonly used residue-to-residue comparison and which (ii) avoids the well-known difficulties concerning the choice of appropriate gap penalties: gaps are not treated explicity, but remain as those parts of the sequences that do not belong to any of the aligned segments. Finally, we discuss the application of our algorithm to two test examples and compare it with commonly used alignment methods. As a first example, we aligned a set of 11 DNA sequences coding for functional helix-loop-helix proteins. Though the sequences show only low overall similarity, our program correctly aligned all of the 11 functional sites, which was a unique result among the methods tested. As a by-product, the reading frames of the sequences were identified. Next, we aligned a set of ribonuclease H proteins and compared our results with alignments produced by other programs as reported by McClure et al. [McClure, M. A., Vasi, T. K. & Fitch, W. M. (1994) Mol. Biol. Evol. 11, 571-592]. Our program was one of the best scoring programs. However, in contrast to other methods, our protein alignments are independent of user-defined parameters.
Resumo:
A study was made of the effects of 5-hydroxytryptamine (5HT) on homomeric neuronal nicotinic receptors (nAcChoR) expressed in Xenopus oocytes after injection of cDNA encoding the wild-type chicken alpha(7) subunit. Acetylcholine (AcCho) elicited large currents (IAcCho) that were reduced by 5HT in a reversible and dose-dependent manner, with a half-inhibitory concentration (IC50) of 56 microM and a Hill coefficient (nH) of 1.2. The inhibition of IAcCho by 5HT was noncompetitive and voltage independent, a behavior incompatible with a channel blockade mechanism. 5HT alone did not elicit membrane currents in oocytes injected with the wild-type alpha(7) subunit cDNA. In contrast, 5HT elicited membrane currents (I5HT) in oocytes injected with cDNA encoding an alpha(7) mutant subunit with a threonine-for-leucine-247 substitution (L247T alpha(7)). I5HT was inhibited by the potent nicotinic receptor blockers alpha-bungarotoxin (100 nM) and methyllycaconitine (1 microM). Furthermore, the characteristics of I5HT, including its voltage dependence, were similar to those of IAcCho. The 5HT dose-I5HT response gave an apparent dissociation constant EC50 of 23.5 microM and a Hill coefficient nH of 1.7, which were not modified by the presence of AcCho. Similarly, the apparent affinity of L247T alpha(7) for AcCho as well as its cooperativity were not influenced by 5HT, indicating a lack of mutual interactions between 5HT and AcCho. These results show that 5HT is a potent noncompetitive antagonist of neuronal alpha(7) nAcChoR, but it becomes a noncompetitive agonist following mutation of the highly conserved leucine residue 247 located in the channel domain M2.
Resumo:
Visual information in primates is relayed from the dorsal lateral geniculate nucleus to the cerebral cortex by three parallel neuronal channels designated the parvocellular, magnocellular, and interlaminar pathways. Here we report that m2 muscarinic acetylcholine receptor in the macaque monkey visual cortex is selectively associated with synaptic circuits subserving the function of only one of these channels. The m2 receptor protein is enriched both in layer IV axons originating from parvocellular layers of the dorsal lateral geniculate nucleus and in cytochrome oxidase poor interblob compartments in layers II and III, which are linked with the parvocellular pathway. In these compartments, m2 receptors appear to be heteroreceptors, i.e., they are associated predominantly with asymmetric, noncholinergic synapses, suggesting a selective role in the modulation of excitatory neurotransmission through the parvocellular visual channel.
Resumo:
Binding of agonists to nicotinic acetylcholine receptors generates a sequence of changes that activate a cation-selective conductance. By measuring electrophysiological responses in chimeric alpha7/alpha3 receptors expressed in Xenopus oocytes, we have showed the involvement of the M2-M3 loop in coupling agonist binding to the channel gate. An aspartate residue therein, Asp-266 in the alpha7 subunit, was identified by site-directed mutagenesis as crucial, since mutants at this position exhibited very poor functional responses to three different nicotinic agonists. We have extended this investigation to another neuronal nicotinic receptor (alpha3/beta4), and found that a homologous residue in the beta4 subunit, Asp-268, played a similar role in coupling. These findings are consistent with a hypothesis that the aspartate residue in the M2-M3 loop, which is conserved in all homomer-forming alpha-type subunits and all neuronal beta-type subunits that combine to form functional receptors, is a major determinant of information transmission from binding site to channel gate in all neuronal nicotinic receptors.
Resumo:
The X chromosome linkage group is conserved in placental mammals. However, X chromosome morphological differences, due to internal chromosome rearrangements, exist among mammalian species. We have developed bovine chromosome painting probes for Xp and Xq to assess segment homologies between the submetacentric bovine X chromosome and the acrocentric sheep and goat X chromosomes. These painting probes and their corresponding DNA libraries were developed by chromosome micromanipulation, DNA micropurification, microcloning, and PCR amplification. The bovine Xp painting probe identified an interstitially located homologous segment in the sheep and goat Xq region, most probably resulting from chromosome inversion. Ten type II (microsatellite) markers obtained from the bovine Xq library and five other X chromosome assigned, but unlinked, markers were used to generate a linkage map for Xq spanning 89.4 centimorgans. The chromosome painting probes and molecular markers generated in this study would be useful for comparative mapping and tracing of internal X chromosome rearrangements in all ruminant species and would contribute to the understanding of mammalian sex chromosome evolution.
Resumo:
To probe the protein environment of an ion channel, we have perturbed the structure of a transmembrane domain by substituting side chains with those of two different sizes by using site-specific mutagenesis. We have used Trp and Ala as a high- and a low-impact perturbation probe, respectively, to replace each of 18 consecutive residues within the putative second transmembrane segment, M2, of an inwardly rectifying potassium channel, ROMK1. Our rationale is that a change in the channel function as a consequence of these mutations at a particular position will reflect the structural environment of the altered side chain. Each position can then be assigned to one of three classes of environments, as grated by different levels of perturbation: very tolerant (channel functions with both Trp and Ala substitutions), tolerant (function preserved with Ala but not with Trp substitution), and intolerant (either Ala or Trp substitution destroys function). We identify the very tolerant environment as being lipid-facing, tolerant as protein-interior-facing, and intolerant as pore-facing. We observe a strikingly ordered pattern of perturbation of all three environmental classes. This result indicates that M2 is a straight alpha-helix.
Resumo:
Liddle syndrome is a mendelian form of hypertension characterized by constitutively elevated renal Na reabsorption that can result from activating mutations in the beta or gamma subunit of the epithelial Na channel. All reported mutations have deleted the last 45-76 normal amino acids from the cytoplasmic C terminus of one of these channel subunits. While these findings implicate these terminal segments in the normal negative regulation of channel activity, they do not identify the amino acid residues that are critical targets for these mutations. Potential targets include the short highly conserved Pro-rich segments present in the C terminus of beta and gamma subunits; these segments are similar to SH3-binding domains that mediate protein-protein interaction. We now report a kindred with Liddle syndrome in which affected patients have a mutation in codon 616 of the beta subunit resulting in substitution of a Leu for one of these highly conserved Pro residues. The functional significance of this mutation is demonstrated both by the finding that this is a de novo mutation appearing concordantly with the appearance of Liddle syndrome in the kindred and also by the marked activation of amiloride-sensitive Na channel activity seen in Xenopus oocytes expressing channels containing this mutant subunit (8.8-fold increase compared with control oocytes expressing normal channel subunits; P = 0.003). These findings demonstrate a de novo missense mutation causing Liddle syndrome and identify a critical channel residue important for the normal regulation of Na reabsorption in humans.
Resumo:
Infectious human respiratory syncytial virus (RSV) was produced by the intracellular coexpression of five plasmid-borne cDNAs. One cDNA encoded a complete positive-sense version of the RSV genome (corresponding to the replicative intermediate RNA or antigenome), and each of the other four encoded a separate RSV protein, namely, the major nucleocapsid N protein, the nucleocapsid P phosphoprotein, the major polymerase L protein, or the protein from the 5' proximal open reading frame of the M2 mRNA [M2(ORF1)]. RSV was not produced if any of the five plasmids was omitted. The requirement for the M2(ORF1) protein is consistent with its recent identification as a transcription elongation factor and confirms its importance for RSV gene expression. It should thus be possible to introduce defined changes into infectious RSV. This should be useful for basic studies of RSV molecular biology and pathogenesis; in addition, there are immediate applications to the development of live attenuated vaccine strains bearing predetermined defined attenuating mutations.