992 resultados para Leishmania (Viannia) naiffi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone H1 in the parasitic protozoan Leishmania is a developmentally regulated protein encoded by two genes, HIS-1.1 and HIS-1.2. These genes are separated by approximately 20 kb of sequence and are located on the same DNA strand of chromosome 27. When Northern blots of parasite RNA were probed with HIS-1 strand-specific riboprobes, we detected sense and antisense transcripts that were polyadenylated and developmentally regulated. When the HIS-1.2 coding region was replaced with the coding region of the neomycin phosphotransferase gene, antisense transcription of this gene was unaffected, indicating that the regulatory elements controlling antisense transcription were located outside of the HIS-1.2 gene, and that transcription in Leishmania can occur from both DNA strands even in the presence of transcription of a selectable marker in the complementary strand. A search for other antisense transcripts within the HIS-1 locus identified an additional transcript (SC-1) within the intervening HIS-1 sequence, downstream of adenine and thymine-rich sequences. These results show that gene expression in Leishmania is not only regulated polycistronically from the sense strand of genomic DNA, but that the complementary strand of DNA also contains sequences that could drive expression of open reading frames from the antisense strand of DNA. These findings suggest that the parasite has evolved in such a way as to maximise the transcription of its genome, a mechanism that might be important for it to maintain virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Susceptibility of BALB/c mice to infection with Leishmania major is associated with a T helper type 2 (Th2) response. Since interleukin-4 (IL-4) is critically required early for Th2 cell development, the kinetics of IL-4 mRNA expression was compared in susceptible and resistant mice during the first days of infection. In contrast to resistant mice, susceptible mice exhibited a peak of IL-4 mRNA in their spleens 90 min after i.v. injection of parasites and in lymph nodes 16 h after s.c. injection. IL-12 and interferon-gamma (IFN-gamma) down-regulated this early peak of IL-4 mRNA; the effect of IL-12 was IFN-gamma dependent. Treatment of resistant C57BL/6 mice with anti-IFN-gamma allowed the expression of this early IL-4 response to L. major. The increased IL-4 mRNA expression occurred in V beta 8, 7, 2- CD4+ cells in BALB/c mice and NK1.1- CD4+ cells in anti-IFN-gamma treated C57BL/6 mice. These results show that the NK1.1+ CD4+ cells, responsible for the rapid burst of IL-4 production after i.v. injection of anti-CD3, do not contribute to the early IL-4 response to L. major.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The murine model of infection with Leishmania major has allowed the demonstration of a causal relationship between, on the one hand, genetically determined resistance to infection and the development of a Th1 CD4+ cell response, and on the other hand, genetically determined susceptibility and Th2 cell maturation. Using this murine model of infection, the role of cytokines in directing the functional differentiation pathway of CD4+ T cell precursors, has been demonstrated in vivo. Thus, IL-12 and IFN-gamma have been shown to favour Th1 cell development and IL-4 is crucial for the differentiation of Th2 responses. Maturation of a Th2 response in susceptible BALB/c mice following infection with L. major is triggered by the IL-4 produced during the first two days after parasite inoculation. This IL-4 rapidly renders parasite specific CD4+ T cells precursors unresponsive to IL-12. A restricted population of CD4+ T cells expressing the V beta 4V alpha 8 TCR heterodimer and recognizing a single epitope on the LACK (Leishmania Activated C-Kinase) antigen of L. major is responsible for this rapid production of IL-4, instructing subsequent differentiation towards the Th2 phenotype of CD4+ T cells specific for several parasite antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monogenetic kinetoplastid protozoan parasite Herpetomonas samuelpessoai expresses a surface-exposed metalloprotease. Comparable to the Leishmania promastigote surface protease, or PSP, the protease of Herpetomonas is active at the surface of fixed and live organisms, and both enzymes display an identical cleavage specificity toward a nonapeptide substrate. The protease was enriched 440 times by partition into Triton X-114 followed by 2 steps of anion exchange chromatography. The 56-kDa enzyme is inhibited by the metal chelator 1,10-phenanthroline and is susceptible to cleavage by glycosyl-phosphatidylinositol phospholipase C (GPI-PLC). The conservation of an identical surface protease activity in these monogenetic and digenetic trypanosomatids suggests that the enzyme has a physiological function in the promastigote (insect) stage of these parasites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect "yellow" family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two soluble exopeptidases were identified in promastigotes of Leishmania major, using an iodinated model tetrapeptide (LIAY) as substrate. Similar activities were also detected in L. major amastigotes and in different species of Leishmania promastigotes. A carboxy- and an aminopeptidase activity were resolved and isolated by anion exchange and gel permeation chromatographies. A single polypeptide of 62 kDa co-purified with the aminopeptidase activity. Optimum pH was neutral for the carboxypeptidase and neutral to alkaline for the aminopeptidase. Both activities were able to hydrolyse a dipeptide substrate (YL), and were inhibited by 20 microM bestatin and 200 microM 1,10-phenanthroline, but not by leupeptin, iodoacetamide and a range of other inhibitors. These results strongly suggest that both enzymes are metalloexopeptidases and thus represent a novel class of soluble peptidases in Leishmania.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT : Les infections par le parasite Leishmania guyanensis se caractérisent par une dissémination depuis le site initial d'infection jusqu'aux tissus naso-pharyngés, responsable de la Leishmaniose à lésions secondaires muco-cutanées (LMC). Les lésions des patients atteints de LMC montrent une massive infiltration de cellules immunitaires, une réponse immunitaire élevée et la présence de parasites (bien qu'en très faible quantité). La LMC engendre une augmentation de l'expression de TNFa ainsi qu'un défaut dans le contrôle de la réponse immunitaire caractérisé par une absence de réponse à l'IL 10. La réponse immunitaire de l'hôte ainsi que la virulence du parasite sont deux facteurs reconnus pour le contrôle de l'infection. Le mécanisme de la pathogenèse de la LMC restent grandement incompris, surtout le mécanisme de dissémination de l'infection du site d'inoculation jusqu'aux sites secondaires d'infection (métastases) ainsi que les détails de la réponse de l'hôte contre le pathogène. Dans un modèle d'infection d' hamsters avec des parasites du Nouveau Monde, la classification des parasites Leishmania se fait en fonction de leur capacité à développer des métastases. Ce modéle d'infection a permis de caractériser différentes souches de parasites selon la classification de l'Organisation Mondiale de la Sante (OMS) tel que la souche de référence W>É-II/BR/78/M5313 qui est reconnue comme hautement métastatique alors que ces clones dérivés de M5313 montrent de grandes variations quand a leur capacité à créer des métastases. Les clones 13 et 21 sont métastatiques (M+) alors que les clones 3 et 17 sont nonmétastatiques (NI-). Les objectifs de cette thèse ont été d'étudier le rôle de la réponse immunitaire innée des macrophages après infection in vitro avec différents clones métastatiques et non-métastatiques du parasite L. guyanensis, ainsi que d'étudier la réponse immunitaire générée suite à une infection in vivo par les clones M+ et M- de L. guyanensis dans un modèle marin. L'analyse de la .réponse immunitaire des macrophages in vitro montrent qu'il y aune augmentation significative de leur statut d'activation après infection par des parasites M+ indiquée par la modulation des marqueurs d'activation de surface CD80, CD86 et CD40, ainsi que une augmentation significative de CXCL 10, CCLS, IL6 et TNFa au niveau transcription de l'ARNm et au niveau de la protéine. Cette phénomène d'activation a été observée chez les deux souches de souris C57BL/6 et BALB/c. L'utilisation d'un inhibiteur d'entrée des parasites (Cytochalsin D) ou d'un inhibiteur des fonctions endosomales (Chloroquine) diminue de manière significative la réponse des macrophages aux parasites M+. L'utilisation de macrophages déficients en TLR, MyD88, et TRIF a démontré que la réponse générée après infection par les parasites M+ était dépendante de la voie de signalisation de TRIF et TLR3. Lors d'infection in vivo par des parasites M5313, au moins 50% des souris BALB/c présentent un phénotype sensible caractérisé par des lésions non-nécrotiques qui ne guérissent pas, persistent plus de 13 semaines après infection et contiennent un nombre considérable de parasites. Ces souris développent une réponse immunitaire de type T helper 2 (Th2) avec un niveau élevé d'IL-4 et d'IL-10. Les autres souris ont un phénotype non-sensible, les souris développant peu ou pas de lésion, avec peu de parasites et une réponse immunitaire diminuée, caractérisée par un niveau faible d'IFNy, d'IL4 et d'IL10. De plus, les souris BALB/c infectées par un parasite L. guyanensis isolé à partir des lésions muco-cutanées d'un patient humain atteint de LMC ont démontrés un phénotype similaire aux souris infectées par la souche M5313 avec 50% des souris développant des lésions persistantes, alors qu'un parasite dérivé des lésions cutanées humains n'a montré qu'une faible sensibilité avec une lésion transitoire qui finit par guérir. Nous avons montré que la sensibilité de ces souris BALB/c dépend de l'IL-4 et de l'IL-10 car les souris IL-10-/sur fond génétique BALB/c ainsi que les souris BALB/c traitée avec de l'anti-IL4 étaient capables de contrôler l'infection par M5313. Les souris C57BL/6 sont résistantes à l'infection par le parasite M5313. Elles développent une lésion transitoire qui guérit 9 semaines après infection. Ces souris résistantes ont un très faible taux de parasites au site d'infection et développent une réponse immunitaire de type Thl avec un niveau élevé d'IFNr et peu d'IL4 et d'IL10. Les infections in vivo de souris déficientes en MyD88, TRIF, TLR3 ou TLR9 (sur fond génétique C57BL/6) ont indiqué que MyD88 et TLR9 étaient impliqués dans la résistance à l'infection par L. guyanensi, et que TRIF et TLR3 avaient un rôle important dans la sensibilité. Ce travail met en évidence le fait que la réponse immunitaire de l'hôte est modulée par le parasite selon leur caractérisation d'être soit M+ ou M-. Nous avons démontré également que plusieurs gènes et voies de signalisations étaient impliqués dans cette réponse favorisant le développement d'une LMC. ABSTRACT : Leishmania guyanensis parasites are able to disseminate from the initial site of cutaneous skin infection to the nasopharyngeal tissues resulting in destructive secondary lesions and the disease Mucocutaneous Leishmaniasis (MCL). The secondary lesions in patients have intense immune cell infiltration, elevated immune responses and the presence (albeit at low levels) of parasites. More specifically, MCL patients produce higher levels of TNFa and display impairment in their ability to control the immune response due to a defect in their ability to respond to IL10. Little is known about the pathogenesis of MCL, especially about the dissemination of the infection from the site of inoculation to secondary sites (metastasis) and the response of the host to the pathogen. The hamster model of L. guyanensis infection has previously characterized the WHO reference strain, L. guyanensis WHI/BR/78/M5313, as being highly metastatic. Clones of parasites derived from this reference strain show a differential ability to metastasize. This thesis studied the differential immune response generated by macrophages in vitro, or by mice in vivo, following infection with L. guyanensis parasites. A significant increase in the activation status of macrophages derived from C57BL/6 or BALB/c mice was observed after in vitro infection with L. guyanensis parasites when compared to non-metastatic parasites. This change in status was evidenced by the increased expression of surface activation markers, together with the chemokines, CXCL 10, CCLS, and cytokines, IL6 and TNFa. Furthermore, in vitro infection of macrophages isolated from mice deficient in either a specific Toll Like Receptor (TLR) or the adaptor molecules MyD88 or TRIF, indicated that the immune response generated following L. guyanensis metastatic parasite infection was reliant on the TRIF dependent TLR3 signalling pathway. In vivo footpad infection of BALB/c mice with the L. guyanensis M5313 parasites showed a reproducible susceptible phenotype, whereby at least 50% of infected mice developed non-healing, nonnecrosing lesions with high parasitemia that persisted over 13 weeks post infection. This phenotype was characterized by a Th2 type cytokine immune response with increased levels of IL4 and IL10 detected in the draining lymph nodes. IL 10 deficient mice on a BALB/c background, or BALB/c mice treated with anti-IL4 were able to control infection with L. guyanensis M5313 parasites, thereby proving that these cytokines were indeed implicated in the susceptibility to infection. Moreover, infection of BALB/c mice with patient isolated L. guyanensis parasites confirmed that MCL derived parasites were able to induce a susceptibility phenotype similar to that of L. guyanensis M5313. C57BL/6 mice, on the other hand, were highly resistant to infection with L. guyanensis M5313 parasites and produced transient footpad swelling that healed by week 9 post infection, together with low degrees of footpad parasitemia and a Thl polarized immune response. Infection of mice deficient in MyD88, TRIF, TLR3, and TLR9 (on a C57BL/6 background), indicated that MyD88 and TLR9 were involved in the resistance of these mice to infection, and that TRIF and TLR3 were involved in the susceptibility. This study has shown that the host response can be differentially modulated depending on the infecting parasite with several genes and pathways being identified that could be involved in promoting the development of MCL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The levels of regulatory T cells (Treg cells), analyzed by Foxp3 mRNA expression, were determined in lesions from patients with acute cutaneous leishmaniasis (ACL) and chronic cutaneous leishmaniasis (CCL). We demonstrated that Treg cells preferentially accumulate in lesions from ACL patients during the early phase of infection (lesion duration of less than 1 month). In addition, levels of Foxp3 mRNA transcripts were significantly higher in specimens from patients with CCL than in those from patients with ACL, suggesting a critical role of intralesional Treg cells in CCL. Intralesional Treg cells from both ACL and CCL patients were shown to have suppressive functions in vitro, since they inhibited the gamma interferon (IFN-gamma) produced by CD4(+) CD25(-) T cells purified from peripheral blood mononuclear cells from the same patient in response to Leishmania guyanensis stimulation. Intralesional 2,3-indoleamine dioxygenase (IDO) mRNA expression was associated with that of Foxp3, suggesting a role for IDO in the suppressive activity of intralesional Treg cells. In addition, a role, albeit minor, of interleukin-10 (IL-10) was also demonstrated, since neutralization of IL-10 produced by intralesional T cells increased IFN-gamma production by effector cells in an in vitro suppressive assay. These results confirm the role of intralesional Treg cells in the immunopathogenesis of human Leishmania infection, particularly in CCL patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following infection with the protozoan parasite Leishmania major, C57BL/6 mice develop a small lesion that heals spontaneously. Resistance to infection is associated with the development of CD4(+) Th1 cells producing gamma interferon (IFN-gamma) and tumor necrosis factor (TNF), which synergize in activating macrophages to their microbicidal state. We show here that C57BL/6 mice lacking both TNF and Fas ligand (FasL) (gld TNF(-/-) mice) infected with L. major neither resolved their lesions nor controlled Leishmania replication despite the development of a strong Th1 response. Comparable inducible nitric oxide synthase (iNOS) activities were detected in lesions of TNF(-/-), gld TNF(-/-), and gld mice, but only gld and gld TNF(-/-) mice failed to control parasite replication. Parasite numbers were high in gld mice and even more elevated in gld TNF(-/-) mice, suggesting that, in addition to iNOS, the Fas/FasL pathway is required for successful control of parasite replication and that TNF contributes only a small part to this process. Furthermore, FasL was shown to synergize with IFN-gamma for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Interestingly, TNF(-/-) mice maintained large lesion size throughout infection, despite being able to largely control parasite numbers. Thus, IFN-gamma, FasL, and iNOS appear to be essential for the complete control of parasite replication, while the contribution of TNF is more important in controlling inflammation at the site of parasite inoculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During its life cycle, the protozoan parasite Leishmania major alternates from an intracellular amastigote form in the mammalian host to a flagellated promastigote form in the insect vector. The expression of the surface metalloprotease (PSP) during differentiation in vitro was investigated by Western and Northern blots, by immunoprecipitation of cells metabolically labeled with [35S]methionine or labeled at the surface with radioactive iodine, and by quantification of the proteolytic activity in substrate-containing polyacrylamide gels. We report that the surface metalloprotease is down-regulated at both the mRNA and the protein level in amastigotes, where it represents less than 1% of the equivalent proteolytic activity detected in promastigotes. A significant amount of mRNA is detected 4 hr after the onset of differentiation. The expression of the protease begins at that time and reaches steady state 8 hr later. The synthesis of PSP precedes the complete morphological differentiation to the promastigote stage and the appearance of the lipophosphoglycan, another major promastigote surface component. In contrast to PSP, a family of mercaptoethanol-activated proteases present in the amastigote exists only at a reduced level in the promastigote. The confinement of the surface metalloprotease to the insect stage of the parasite suggests that it has no physiological function in the parasitism maintenance of mammalian host macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymorphonuclear neutrophils (PMN) are key components of the inflammatory response contributing to the development of pathogen-specific immune responses. Following infection with Leishmania major, neutrophils are recruited within hours to the site of parasite inoculation. C57BL/6 mice are resistant to infection, and BALB/c mice are susceptible to infection, developing unhealing, inflammatory lesions. In this report, we investigated the expression of cell surface integrins, TLRs, and the secretion of immunomodulatory cytokines by PMN of both strains of mice, in response to infection with L. major. The parasite was shown to induce CD49d expression in BALB/c-inflammatory PMN, and expression of CD49d remained at basal levels in C57BL/6 PMN. Equally high levels of CD11b were expressed on PMN from both strains. In response to L. major infection, the levels of TLR2, TLR7, and TLR9 mRNA were significantly higher in C57BL/6 than in BALB/c PMN. C57BL/6 PMN secreted biologically active IL-12p70 and IL-10. In contrast, L. major-infected BALB/c PMN transcribed and secreted high levels of IL-12p40 but did not secrete biologically active IL-12p70. Furthermore, IL-12p40 was shown not to associate with IL-23 p19 but formed IL-12p40 homodimers with inhibitory activity. No IL-10 was secreted by BALB/c PMN. Thus, following infection with L. major, in C57BL/6 mice, PMN could constitute one of the earliest sources of IL-12, and in BALB/c mice, secretion of IL-12p40 could contribute to impaired, early IL-12 signaling. These distinct PMN phenotypes may thus influence the development of L. major-specific immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Leishmaniasis is a common parasitic disease in Southern Europe, caused by Leishmania infantum. The failures of current treatment with pentavalent antimonials are partially attributable to the emergence of antimony-resistant Leishmania strains. This study analyses the in vitro susceptibility to pentavalent antimony of intracellular amastigotes from a range of L. infantum strains, derived from the same infected animal, during in vitro and in vivo passages and after host treatment with meglumine antimoniate. Results: SbV-IC50 values for strains from two distinct isolates from the same host and one stock after two years of culture in NNN medium and posterior passage to hamster were similar (5.0 ± 0.2; 4.9 ± 0.2 and 4.4 ± 0.1 mgSbV/L, respectively). In contrast, a significant difference (P < 0.01, t test) was observed between the mean SbV-IC50 values in the stocks obtained before and after treatment of hosts with meglumine antimoniate (4.7 ± 0.4 mgSbV/L vs. 7.7 ± 1.5 mgSbV/L). Drug-resistance after drug pressure in experimentally infected dogs increased over repeated drug administration (6.4 ± 0.5 mgSbV/L after first treatment vs. 8.6 ± 1.4 mgSbV/L after the second) (P < 0.01, t test). Conclusions: These results confirm previous observations on strains from Leishmania/HIV co-infected patients and indicate the effect of the increasing use of antimony derivatives for treatment of canine leishmaniasis in endemic areas on the emergence of Leishmania antimony-resistant strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unicellular organisms, such as the protozoan parasite Leishmania, can be stimulated to show some morphological and biochemical features characteristic of mammalian apoptosis. This study demonstrates that under a variety of stress conditions such as serum deprivation, heat shock and nitric oxide, cell death can be induced leading to genomic DNA fragmentation into oligonucleosomes. DNA fragmentation was observed, without induction, in the infectious stages of the parasite, and correlated with the presence of internucleosomal nuclease activity, visualisation of 45 to 59 kDa nucleases and detection of TUNEL-positive nuclei. DNA fragmentation was not dependent on active effector downstream caspases nor on the lysosomal cathepsin L-like enzymes CPA and CPB. These data are consistent with the presence of a caspase-independent cell death mechanism in Leishmania, induced by stress and differentiation that differs significantly from metazoa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous results have documented a burst of IL-4 mRNA that peaks in draining lymph nodes of susceptible BALB/c mice 16 h after infection with Leishmania major. The importance of this early IL-4 response in subsequent Th2 cell maturation is supported by observations showing that 1) neutralization of IL-4 at the initiation of infection or 2) administration of IL-12, which results in an inhibition of the 16 h IL-4 mRNA burst, inhibits Th2 cell development. However, both treatments are effective in hampering Th2 cell development only if given at a time when IL-4 has been produced for &lt;48 h. At this time after infection, lymph node CD4+ T cells from BALB/c mice no longer respond to IL-12. This IL-12 unresponsiveness is prevented in mice treated with anti-IL-4 Abs at the initiation of infection. Finally, the inhibition of Th2 development in BALB/c mice treated with anti-IL-4 Abs at the onset of infection results from maintenance of IL-12 responsiveness, since it requires IL-12. Together, these results reveal a narrow window of time, between 16 h and &lt;48 h after infection, during which IL-4 produced rapidly in BALB/c mice renders T cells unresponsive to IL-12, allowing their differentiation toward the Th2 phenotype.