978 resultados para Laser-plasma interaction
Resumo:
We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.
Resumo:
The expansion of a dense plasma through a more rarefied ionized medium is a phenomenon of interest in various physics environments ranging from astrophysics to high energy density laser-matter laboratory experiments. Here this situation is modeled via a one-dimensional particle-in-cell simulation; a jump in the plasma density of a factor of 100 is introduced in the middle of an otherwise equally dense electron-proton plasma with an uniform proton and electron temperature of 10 eV and 1 keV, respectively. The diffusion of the dense plasma, through the rarefied one, triggers the onset of different nonlinear phenomena such as a strong ion-acoustic shock wave and a rarefaction wave. Secondary structures are detected, some of which are driven by a drift instability of the rarefaction wave. Efficient proton acceleration occurs ahead of the shock, bringing the maximum proton velocity up to 60 times the initial ion thermal speed. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3469762]
Resumo:
In this paper we report on the radiography of a shock-compressed target using laser produced proton beams. A low-density carbon foam target was shock compressed by long pulse high-energy laser beams. The shock front was transversally probed with a proton beam produced in the interaction of a high intensity laser beam with a gold foil. We show that from radiography data, the density profile in the shocked target can be deduced using Monte Carlo simulations. By changing the delay between long and short pulse beams, we could probe different plasma conditions and structures, demonstrating that the details of the steep density gradient can be resolved. This technique is validated as a diagnostic for the investigation of warm dense plasmas, allowing an in situ characterization of high-density contrasted plasmas.
Resumo:
When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.
Resumo:
The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.
Resumo:
K alpha radiation generated by interaction of an ultrashort (1 ps) laser with thin (25 mu m) Ti foils at high intensity (2x10(16) W/cm(2)) is analyzed using data from a spherical Bragg crystal imager and a single hit charge-coupled device spectrometer together with Monte Carlo simulations of K alpha brightness. Laser to K alpha and electron conversion efficiencies have been determined. We have also measured an effective crystal reflectivity of 3.75 +/- 2%. Comparison of imager data with data from the relatively broadband single hit spectrometer has revealed a reduction in crystal collection efficiency for high K alpha yield. This is attributed to a shift in the K-shell spectrum due to Ti ionization. (c) 2005 American Institute of Physics.
Resumo:
A method for obtaining quantitative information about electric field and charge distributions from proton imaging measurements of laser-induced plasmas is presented. A parameterised charge distribution is used as target plasma. The deflection of a proton beam by the electric field of such a plasma is simulated numerically as well as the resulting proton density, which will be obtained on a screen behind the plasma according to the proton imaging technique. The parameters of the specific charge distributions are delivered by a combination of linear regression and nonlinear fitting of the calculated proton density distribution to the measured optical density of a radiochromic film screen changed by proton exposure. It is shown that superpositions of spherical Gaussian charge distributions as target plasma are sufficient to simulate various structures in proton imaging measurements, which makes this method very flexible.
Resumo:
High power lasers are a tool that can be used to determine important parameters in the context of Warm Dense Matter, i.e. at the convergence of low-temperature plasma physics and finite-temperature condensed matter physics. Recent results concerning planet inner core materials such as water and iron are presented. We determined the equation of state, temperature and index of refraction of water for pressures up to 7 Mbar. The release state of iron in a LiF window allowed us to investigate the melting temperature near the inner core boundary conditions. Finally, the first application of proton radiography to the study of shocked material is also discussed.
Modulated wavepackets associated with longitudinal dust grain oscillations in a dusty plasma crystal
Resumo:
The nonlinear amplitude modulation of longitudinal dust lattice waves (LDLWs) propagating in a dusty plasma crystal is investigated in a continuum approximation. It is shown that long wavelength LDLWs are modulationally stable, while shorter wavelengths may be unstable. The possibility for the formation and propagation of different envelope localized excitations is discussed. It is shown that the total grain displacement bears a (weak) constant displacement (zeroth harmonic mode), due to the asymmetric form of the nonlinear interaction potential. The existence of asymmetric envelope localized modes is predicted. The types and characteristics of these coherent nonlinear structures are discussed. (C) 2004 American Institute of Physics.