822 resultados para Laser Optics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we present a compact all-room-temperature frequency-doubling scheme generating orange light, using a PPKTP waveguide and a quantum-dot external cavity diode laser (QD-ECDL). The maximum output power for the second harmonic generated light (SHG) was 1.43 mW at 613 nm, achieved for 70 mW of launched pump power at 1226 nm. This represents an important step towards a compact and wall-plug-efficient coherent orange light source, operating at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compact CW lasers in the visible spectral region are of great importance for vast number of applications including biophotonics, photomedicine, spectroscopy and confocal microscopy. Currently, commercially available lasers of this spectral region are bulky, expensive and inconvenient in use. Also, there is a lack of diode lasers emitting in the visible spectral range, particularly in the yellow region, where a range of important fluorescent probes are optimally excited. An attractive way to realize a compact yellow laser source is second harmonic generation (SHG) in a periodically poled nonlinear crystal containing a waveguide which allows high-efficient frequency conversion even at moderate power level. In this respect, periodically poled lithium niobate (PPLN) waveguided crystal is one of the best candidates for efficient SHG. In recent years, the progress made with the fabrication of good quality waveguides in PPLN crystals in combination with availability of low-cost, good quality semiconductor diode lasers, offering the coverage of a broad spectral range between 1 µm and 1.3 µm, allows compact CW laser sources in the visible spectral region to be realized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wavelength bistability between 1245nm and 1295nm is demonstrated in a multi-section quantum-dot laser, controlled via the reverse bias on the saturable absorber. Continuous-wave or mode-locked regimes are achieved (output power up to 25mW and 17mW). © OSA/CLEO 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The THz optoelectronics field is now maturing and semiconductor-based THz antenna devices are becoming more widely implemented as analytical tools in spectroscopy and imaging. Photoconductive (PC) THz switches/antennas are driven optically typically using either an ultrashort-pulse laser or an optical signal composed of two simultaneous longitudinal wavelengths which are beat together in the PC material at a THz difference frequency. This allows the generation of (photo)carrier pairs which are then captured over ultrashort timescales usually by defects and trapping sites throughout the active material lattice. Defect-implanted PC materials with relatively high bandgap energy are typically used and many parameters such as carrier mobility and PC gain are greatly compromised. This paper demonstrates the implementation of low bandgap energy InAs quantum dots (QDs) embedded in standard crystalline GaAs as both the PC medium and the ultrafast capture mechanism in a PC THz antenna. This semiconductor structure is grown using standard MBE methods and allows the device to be optically driven efficiently at wavelengths up to ~1.3 µm, in this case by a single tunable dual-mode QD diode laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasi-phase-matching is an important and widelyused technique in nonlinear optics enabling efficient frequency up-conversion. However, since its introduction almost half a century ago, this technique is well developed for near infrared (IR) but is intrinsically limited in spectral tunability in the visible range by the strict conditions set by the spatial modulation which compensates the momentum mismatch imposed by the dispersion. Here, we provide a fundamental generalization of quasi-phase-matching based on the utilization of a significant difference in the effective refractive indices of the high- and low-order modes in multimode waveguides. This concept enables to match the period of poling in a very broad wavelength range and opens up a new avenue for an order-ofmagnitude increase in wavelength range for frequency conversion from a single crystal. Using this approach, we demonstrate an all-room-temperature continuous-wave (CW) second harmonic generation (SHG) with over 60 nm tunability from green to red in a periodically-poled potassium titanyl phosphate (PPKTP) waveguide pumped by a single broadly-tunable quantumdot laser diode. © 2012 by Astro, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting subnanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves. © 2014 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two fundamental laser physics phenomena - dissipative soliton and polarisation of light are recently merged to the concept of vector dissipative soliton (VDS), viz. train of short pulses with specific state of polarisation (SOP) and shape defined by an interplay between anisotropy, gain/loss, dispersion, and nonlinearity. Emergence of VDSs is both of the fundamental scientific interest and is also a promising technique for control of dynamic SOPs important for numerous applications from nano-optics to high capacity fibre optic communications. Using specially designed and developed fast polarimeter, we present here the first experimental results on SOP evolution of vector soliton molecules with periodic polarisation switching between two and three SOPs and superposition of polarisation switching with SOP precessing. The underlying physics presents an interplay between linear and circular birefringence of a laser cavity along with light induced anisotropy caused by polarisation hole burning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a study on the potential use of ultra-longlasercavities for unrepeateredfiber communication, based on the theory of nonlinearity management. A comparison is offered between the performance of ultra-longlasers and standard bi-directional distributed amplification schemes in nonrepeated transmission. Links based on both traditional (SMF/DCF) and modern Ultrawave transmissionfibers are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, temporal and statistical properties of quasi-CW fiber lasers have attracted a great attention. In particular, properties of Raman fiber laser (RFLs) have been studied both numerically and experimentally [1,2]. Experimental investigation is more challengeable, as the full generation optical bandwidth (typically hundreds of GHz for RFLs) is much bigger than real-time bandwidth of oscilloscopes (up to 60GHz for the newest models). So experimentally measured time dynamics is highly bandwidth averaged and do not provide precise information about overall statistical properties. To overpass this, one can use the spectral filtering technique to study temporal and statistical properties within optical bandwidth comparable with measurement bandwidth [3] or indirect measurements [4]. Ytterbium-doped fiber lasers (YDFL) are more suitable for experimental investigation, as their generation spectrum usually 10 times narrower. Moreover, recently ultra-narrow-band generation has been demonstrated in YDFL [5] which provides in principle possibility to measure time dynamics and statistics in real time using conventional oscilloscopes. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An all-fiber normal-dispersion Yb-doped fiber laser with 45- tilted fiber grating (TFG) isto the best of our knowledgeexperimentally demonstrated for the first time. Stable linearly-chirped pulses with the duration of 4 ps and the bandwidth of 9 nm can be directly generated from the laser cavity. By employing the 45 TFG with the polarization-dependent loss of 33 dBoutput pulses with high polarization extinction ratio of 26 dB are implemented in the experiment. Our result shows that the 45 TFG can work effectively as a polarizerwhich could be exploited to singlepolarization all-fiber lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on buried waveguides fabricated in lithium niobate (LN) by the method of direct femtosecond (fs) laser inscription. 5% MgO doped LiNbO3 was chosen as the host material because of its high quality and damage threshold, as well as relatively low cost. Direct fs inscription by astigmatically shaped beam in crystals usually produces multiple 'smooth' tracks (with reduced refractive index), which encircle the light guiding 'core', thus creating a depressed cladding WG. A high-repetition rate fs laser system was used for inscription at a depth of approximately 500 μm. Using numerical modelling, it was demonstrated that the properties of fs-written WGs can be controlled by the WG geometry. Buried, depressed-cladding WGs in LN host with circular cross-section were also demonstrated. Combining control over the WG dispersion with quasi-phase matching will allow various ultralow-pump-power, highly-efficient, nonlinear light-guiding devices - all in an integrated optics format.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-seeded, gain-switched operation of an InGaN multi-quantum-well diode laser is reported for the first time. Narrow-line, wavelength-tunable, picosecond pulses have been generated from a standard, uncoated diode laser in an external cavity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple technique based on superimposed cavities structure for direct real-time assessment of a DFB fiber laser mode condition during operation is demonstrated and used to provide a cavity mode conditioning feedback mechanism to optimize output performance. Significant improvements to the output performance and robustness are achieved over the entire pump power range without ambient isolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a simple Er-doped fiber laser configuration for achieving stable dual-wavelength oscillation at room temperature, in which a high birefringence fiber Bragg grating was used as the wavelength-selective component. Stable dual-wavelength oscillation at room temperature with a wavelength spacing of 0.23 nm and mutually orthogonal polarization stages was achieved by utilizing the polarization hole-burning effect. An amplitude variation of less than 0.7 dB over an 80 s period was obtained for both wavelengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.