991 resultados para LUMINESCENCE QUANTUM YIELD
Resumo:
We have recently developed a scaleable Artificial Boundary Inhomogeneity (ABI) method [Chem. Phys. Lett.366, 390–397 (2002)] based on the utilization of the Lanczos algorithm, and in this work explore an alternative iterative implementation based on the Chebyshev algorithm. Detailed comparisons between the two iterative methods have been made in terms of efficiency as well as convergence behavior. The Lanczos subspace ABI method was also further improved by the use of a simpler three-term backward recursion algorithm to solve the subspace linear system. The two different iterative methods are tested on the model collinear H+H2 reactive state-to-state scattering.
Resumo:
Ethephon promotes fruit abscission and accelerates harvest of macadamia, Macadamia integrifolia (Proteaceae), but has limited use due to concerns that associated abscission of inner-canopy leaves may reduce subsequent yield and nut quality. Yield and quality were monitored for 2 years following ethephon application to both unshaken and mechanically shaken trees of the late-abscising cultivar, A16. Nut quality was not adversely affected in subsequent seasons, but effects on yield varied. In 3 of 6 experiments, ethephon reduced yield in the year after application. However, in 4 of the 6 experiments, 2 years of ethephon application greatly elevated yield in the third year. This was not a compensating recovery from low second-year yield, as third-year yield of trees that received only 1 ethephon treatment did not differ from yield of control trees. Ethephon-assisted harvest remains feasible for macadamia, although further work is warranted given the potential risks and considerable benefits for subsequent yield. Inner canopy defoliation, resulting from ethephon use, could represent a canopy management technique for dense-canopy fruit trees.
Resumo:
A hyphenated instrumental approach has been used to obtain reliable values for the propagation rate coefficients as a function of conversion for polymerizations of methyl methacrylate (MMA) and a mixture of MMA and ethyleneglycol dimethacrylate (EGDMA) with a 1:1 concentration of double bonds, from near the onset of the Trommsdorf region into the glass region. ESR spectroscopy was used to measure the radical concentration while FT-NIR fibre-optic spectroscopy was employed to measure instantaneously the double-bond concentration within the temperature-controlled cavity of the ESR instrument during polymerization. The advantage of this approach to the measurement of the rate coefficient is that it is equally applicable to branching and linear polymerizations. For the polymerization of methyl methacrylate, the values of the rate coefficient at the lowest conversions at which reliable values could be obtained were in agreement with recently reported values obtained by the PLP-SEC method. For the lowest conversions, the values obtained were 403 1 mol(-1) s(-1) at 306 K for MMA and 5201 mol(-1) s(-1) at 310 K for a 1:1 mixture of MMA and EGDMA. (C) 2003 Society of Chemical Industry.
Resumo:
We report the experimental demonstration of quantum teleportation of the quadrature amplitudes of a light field. Our experiment was stably locked for long periods, and was analyzed in terms of fidelity F and with signal transfer T-q=T++T- and noise correlation V-q=Vinparallel to out+Vinparallel to out-. We observed an optimum fidelity of 0.64+/-0.02, T-q=1.06+/-0.02, and V-q=0.96+/-0.10. We discuss the significance of both T-q>1 and V-q
Resumo:
Results of experiments recently performed are reported, in which two optical parametric amplifiers were set up to generate two independently quadrature squeezed continuous wave laser beams. The transformation of quadrature squeezed states into polarization squeezed states and into states with spatial quantum correlations is demonstrated. By utilizing two squeezed laser beams, a polarization squeezed state exhibiting three simultaneously squeezed Stokes operator variances was generated. Continuous variable polarization entanglement was generated and the Einstein-Podolsky-Rosen paradox was observed. A pair of Stokes operators satisfied both the inseparability criterion and the conditional variance criterion. Values of 0.49 and 0.77, respectively, were observed, with entanglement requiring values below unity. The inseparability measure of the observed quadrature entanglement was 0.44. This value is sufficient for a demonstration of quantum teleportation, which is the next experimental goal of the authors.
Resumo:
We introduce a refinement of the standard continuous variable teleportation measurement and displacement strategies. This refinement makes use of prior knowledge about the target state and the partial information carried by the classical channel when entanglement is nonmaximal. This gives an improvement in the output quality of the protocol. The strategies we introduce could be used in current continuous variable teleportation experiments.
Resumo:
We investigate coherent electron transport through a parallel circuit of two quantum dots (QDs), each of which has a single tunable. energy level. Electrons tunnelling via each dot from the left lead interfere with each other at the right lead. It is shown that due to the quantum interference of tunnelling electrons the double QD device is magnetically polarized by coherent circulation of electrons on the closed path through the dots and the leads. By varying the energy level of each dot one can make the magnetic states of the device be up-, non- or down-polarized. It is shown that for experimentally accessible temperatures and applied biases the magnetic polarization currents Should be sufficiently large to observe with current nanotechnology.
Resumo:
Functional knowledge of the physiological basis of crop adaptation to stress is a prerequisite for exploiting specific adaptation to stress environments in breeding programs. This paper presents an analysis of yield components for pearl millet, to explain the specific adaptation of local landraces to stress environments in Rajasthan, India. Six genotypes, ranging from high-tillering traditional landraces to low-tillering open-pollinated modern cultivars, were grown in 20 experiments, covering a range of nonstress and drought stress patterns. In each experiment, yield components (particle number, grain number, 100 grain mass) were measured separately for main shoots, basal tillers, and nodal tillers. Under optimum conditions, landraces had a significantly lower grain yield than the cultivars, but no significant differences were observed at yield levels around 1 ton ha(-1). This genotype x environment interaction for grain yield was due to a difference in yield strategy, where landraces aimed at minimising the risk of a crop failure under stress conditions, and modem cultivars aimed at maximising yield potential under optimum conditions. A key aspect of the adaptation of landraces was the small size of the main shoot panicle, as it minimised (1) the loss of productive tillers during stem elongation; (2) the delay in anthesis if mid-season drought occurs; and (3) the reduction in panicle productivity of the basal tillers under stress. In addition, a low investment in structural panicle weight, relative to vegetative crop growth rate, promoted the production of nodal tillers, providing a mechanism to compensate for reduced basal tiller productivity if stress occurred around anthesis. A low maximum 100 grain mass also ensured individual grain mass was little affected by environmental conditions. The strategy of the high-tillering landraces carries a yield penalty under optimum conditions, but is expected to minimise the risk of a crop failure, particularly if mid-season drought stress occurs. The yield architecture of low-tillering varieties, by contrast, will be suited to end-of-season drought stress, provided anthesis is early. Application of the above adaptation mechanisms into a breeding program could enable the identification of plant types that match the prevalent stress patterns in the target environments. (C) 2003 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Soil characteristics related to the genesis, land use and management are important factors in water dynamics in watersheds. This study evaluated physical, morphological and pedogenetic attributes related to water yield potential in small watersheds in Guarapari, ES, Brazil. The following representative profiles were selected, morphologically described and sampled in area of Atlantic Forest domain: Lithic Udifolists, Oxyaquic Udifluventes, Typic Paleudults, Typic Hapludults, Typic Hapludox, Oxic Dystrudepts and Typic Endoaquents. Samples were collected in the soil profiles for physical analysis. Measurements of field-saturated hydraulic conductivity and soil penetration resistance were perfomed in some profiles, which were under different uses. The Endoaquents of Limão Creek can be considered efficient as temporary water reservoirs. However, the use of artificial drainage tends to reduce this effect. Differential erosion was detected by the sand texture on the surface of the Typic Paleudults due to the low degree of clay flocculation, slope, high resistance to the penetration and low hydraulic conductivity of the Bt horizon, making it necessary to adopt soil management practices to increase the water infiltration. Under pasture, mainly in the cattle trails where the trampling is more intense, there was high resistance to penetration in the superficial layers of the Typic Hapludults. The Typic Hapludox have the greatest potential for water yield in the small watersheds because of its greater extent in the headwaters and their morphological and physical characteristics, which can result in increased aquifer recharge.
Resumo:
The objective of this work was to evaluate the productive performance of broccoli under different top-dressing organic fertilizations. The experiment was conducted under protected cultivation, in a completely randomized design with four replications, with two plants per experimental unit. Broccoli seedlings were produced in a commercial substrate in styrofoam trays. The seedlings were transplanted to plastic pots containing 10.0 L of substrate made up of subsoil and organic compost at the ratio of 3:1 (v/v), respectively, which is equivalent to about 20.0 t ha-1 of organic compost at planting. After seedling establishment, the top-dressing fertilization treatments were applied: gliricidia biomass associated or not with liquid biofertilizer of cattle manure to the soil and bokashi. Two control treatments were established: one with mineral fertilization recommended for the crop and the other without top-dressing fertilization. The broccoli production was evaluated (commercial standard). Plants that received mineral fertilizer were more productive, however, they were not significantly different (p>0.05), by Dunnet test, from the plants fertilized with 2.5 t ha-1 gliricidiabiomass (dry mass) associated with liquid biofertilizer (2.0 L m-2) applied to soil. Top-dressing fertilizations with only gliricidia, at 2.5 and 5.0 t ha-1 of biomass (dry mass), resulted in no significant increase in production of broccoli inflorescence. The use of bokashi in addition to gliricidia biomass and liquid biofertilizer reduced the efficiency of the fertilization compared with plants that received only gliricidia and liquid biofertilizer.
Resumo:
The use of cover crops is important for the agricultural crop and soil management in order to improve the system and, consequently, to increase yield. Therefore, the present study analyzed the effect of crop residues of black oat (Avena strigosa Schreb.) (BO) and a cocktail (CO) of BO, forage turnip (Raphanus sativus L.) (FT) and common vetch (Vicia sativa L.) (V) on the emergence speed index (ESI), seedling emergence speed (SES) plant height and soybean yield in different intervals between cover crop desiccation with glyphosate 480 (3 L ha-1) and BRS 232 cultivar sowing. Plots of 5 x 2.5 m with 1 m of border received four treatments with BO cover crops and four with CO as well as a control for each cover crop, at random, with five replications. The plots were desiccated in intervals of 1, 10, 20 and 30 days before soybean seeding. The harvest was manual while yield was adjusted to 13% of moisture content. The experimental design was completely randomized with splitplots and means compared by the Scott and Knott test at 5% of significance. The results showed that CO of cover crops can be recommended for soybean to obtain a more vigorous seedling emergence, from 10 days after cover crop desiccation.
Resumo:
In recent years, several new coffee cultivars recommended for different regions have been released. However, the performance of these varieties in many traditionally producing regions is unknown. Difference of climate and soil may jeopardize the productivity of the new cultivars and cause losses to farmers. The objective of this study is to evaluate the vegetative growth and productive genotypes of C. arabica in the conditions of the Northwestern Rio de Janeiro State, Brazil. The experiment was settled in 2007, in Panorama 1 Farm, located in the municipality of Varre Sai, RJ. Twenty-five genotypes of C. arabica were planted in a spacing of 2.5 × 0.8 m, using a completely randomized design with five replications and eight plants per plot. There were eight measurements of vegetative growth represented by plant height, stem diameter and number of plagiotropic branches. Assessments of productivity were also performed in years 2009 and 2010. There was a positive phenotypic correlation among vegetative characteristics and between vegetative characteristics and yield in the first harvest, while in the second harvest only the number of plagiotropic branches was positively correlated with yield. Up to date, the genotypes Catucaí amarelo 2 SL, Catiguá MG 02, Acauã, Palma II, Sabiá 398, IPR 103/ Iapar, IPR 100/Iapar, H 419-10-6-2-12-1, Catucaí amarelo 24 / 137, Iapar 59, Catucaí amarelo 20/15, H 419-10-6-2-5-10-1 and H 419-10-6-2-5-1 had the highest average yield after two harvests.
Resumo:
The use of cover crops in no-tillage systems can provide better conditions for the development of soybean plants with positive effects on grain yield and growth analysis techniques allow researchers to characterize and understand the behavior of soybean plants under different straw covers. Thus, the aim of this study was to characterize, using growth analysis, yield components and agronomic performance of soybean under common bean, Brachiaria brizantha and pearl millet straws. The experiment was performed on a soil under cerrado in the municipality of Santo Antônio de Goiás, GO. The experiment was arranged in a randomized complete block design with three treatments (cover crops) and five replications. Soybean grain yield was lower in the B. brizantha straw treatment (3,708 kg ha-1) than both in the pearl millet (4.772 kg ha-1) and common bean straw treatments (5,200 kg ha-1). The soybean growth analysis in B. brizantha, pearl millet and common bean allowed characterizing the variation in the production of dry matter of leaves, stems, pods and total and leaf area index that provided different grain yields. The cover crop directly affects the soybean grain yield.
Resumo:
Soybean genotypes grown in sub-tropical climate may exhibit lodging. The plant lodging is influenced by soil type and fertility level, sowing date, latitude and altitude of the location, plant population and conditions of crop development. Plant regulators and herbicides are able to avoid or reduce plant lodging. This study aimed to verify the effects of the growth regulators TIBA and daminozide on vegetative growth and yield of soybean cultivar CD 214 RR. The experiment was carried out at a field in randomized block design with four replications in a factorial scheme. The A factor was represented by the combination of regulators TIBA and daminozide and its concentrations, and the Factor B was seven times of evaluation of injury and plant height or eight times of evaluation of lodging. In the range of doses used, the application of daminozide resulted in greater injury to soybean plants than TIBA. The smaller plant height was achieved by the application of 6 g ha-1 of TIBA and 1200 g ha-¹ of daminozide. Treatments with daminozide (100 g ha-¹) and TIBA (10 g ha-1) stood out due to the reduced lodging of soybean plants. Grain weight increased linearly when the levels of TIBA increased. There was a negative correlation between lodging and grain yield and a positive correlation between plant height and lodging. There was also a negative correlation between injury caused by the application of plant regulators and lodging.
Resumo:
The different methods of sewage sludge stabilization modify their physical chemical and biological properties, altering its efficiency when applied in agriculture. The objective of this study was to evaluate the nutrient levels in soil and the yield of sunflower fertilized with sewage sludge stabilized by different processes. The experiment was conducted in Cambisol, with the treatments: control (without fertilization), fertilization with sewage sludge solarized, composted, vermicomposted, limed and chemical fertilizer recommended for sunflower crop. The experimental design a randomized block with four replications. The different methods of sewage sludge treatment did not affect the yield; however, the application of sewage sludge, regardless the stabilization process adopted, was more effective than chemical fertilizer and the control treatment. Overall, fertilization with limed sewage sludge provided higher soil nutrients concentrations, while treatments with composted and vermicomposted sewage sludge showed higher levels of nutrients in the plant.