952 resultados para LCL filters


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A joint analysis-synthesis framework is developed for the compressive sensing (CS) recovery of speech signals. The signal is assumed to be sparse in the residual domain with the linear prediction filter used as the sparse transformation. Importantly this transform is not known apriori, since estimating the predictor filter requires the knowledge of the signal. Two prediction filters, one comb filter for pitch and another all pole formant filter are needed to induce maximum sparsity. An iterative method is proposed for the estimation of both the prediction filters and the signal itself. Formant prediction filter is used as the synthesis transform, while the pitch filter is used to model the periodicity in the residual excitation signal, in the analysis mode. Significant improvement in the LLR measure is seen over the previously reported formant filter estimation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov’s transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of the continuous wavelet transform (CWT) to provide good time and frequency localization has made it a popular tool in time-frequency analysis of signals. Wavelets exhibit constant-Q property, which is also possessed by the basilar membrane filters in the peripheral auditory system. The basilar membrane filters or auditory filters are often modeled by a Gammatone function, which provides a good approximation to experimentally determined responses. The filterbank derived from these filters is referred to as a Gammatone filterbank. In general, wavelet analysis can be likened to a filterbank analysis and hence the interesting link between standard wavelet analysis and Gammatone filterbank. However, the Gammatone function does not exactly qualify as a wavelet because its time average is not zero. We show how bona fide wavelets can be constructed out of Gammatone functions. We analyze properties such as admissibility, time-bandwidth product, vanishing moments, which are particularly relevant in the context of wavelets. We also show how the proposed auditory wavelets are produced as the impulse response of a linear, shift-invariant system governed by a linear differential equation with constant coefficients. We propose analog circuit implementations of the proposed CWT. We also show how the Gammatone-derived wavelets can be used for singularity detection and time-frequency analysis of transient signals. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impoverishment of particles, i.e. the discretely simulated sample paths of the process dynamics, poses a major obstacle in employing the particle filters for large dimensional nonlinear system identification. A known route of alleviating this impoverishment, i.e. of using an exponentially increasing ensemble size vis-a-vis the system dimension, remains computationally infeasible in most cases of practical importance. In this work, we explore the possibility of unscented transformation on Gaussian random variables, as incorporated within a scaled Gaussian sum stochastic filter, as a means of applying the nonlinear stochastic filtering theory to higher dimensional structural system identification problems. As an additional strategy to reconcile the evolving process dynamics with the observation history, the proposed filtering scheme also modifies the process model via the incorporation of gain-weighted innovation terms. The reported numerical work on the identification of structural dynamic models of dimension up to 100 is indicative of the potential of the proposed filter in realizing the stated aim of successfully treating relatively larger dimensional filtering problems. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose to employ bilateral filters to solve the problem of edge detection. The proposed methodology presents an efficient and noise robust method for detecting edges. Classical bilateral filters smooth images without distorting edges. In this paper, we modify the bilateral filter to perform edge detection, which is the opposite of bilateral smoothing. The Gaussian domain kernel of the bilateral filter is replaced with an edge detection mask, and Gaussian range kernel is replaced with an inverted Gaussian kernel. The modified range kernel serves to emphasize dissimilar regions. The resulting approach effectively adapts the detection mask according as the pixel intensity differences. The results of the proposed algorithm are compared with those of standard edge detection masks. Comparisons of the bilateral edge detector with Canny edge detection algorithm, both after non-maximal suppression, are also provided. The results of our technique are observed to be better and noise-robust than those offered by methods employing masks alone, and are also comparable to the results from Canny edge detector, outperforming it in certain cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Monte Carlo filter, based on the idea of averaging over characteristics and fashioned after a particle-based time-discretized approximation to the Kushner-Stratonovich (KS) nonlinear filtering equation, is proposed. A key aspect of the new filter is the gain-like additive update, designed to approximate the innovation integral in the KS equation and implemented through an annealing-type iterative procedure, which is aimed at rendering the innovation (observation prediction mismatch) for a given time-step to a zero-mean Brownian increment corresponding to the measurement noise. This may be contrasted with the weight-based multiplicative updates in most particle filters that are known to precipitate the numerical problem of weight collapse within a finite-ensemble setting. A study to estimate the a-priori error bounds in the proposed scheme is undertaken. The numerical evidence, presently gathered from the assessed performance of the proposed and a few other competing filters on a class of nonlinear dynamic system identification and target tracking problems, is suggestive of the remarkably improved convergence and accuracy of the new filter. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage source inverter (VSI) fed six-phase induction motor drives have high 6n +/- 1; n = odd order harmonic currents, due to absence of back emf for these currents. To suppress these harmonic currents, either bulky inductive harmonic filters or complex pulse width modulation (PWM) techniques have to be used. This paper proposes a simple harmonic elimination scheme using capacitor fed inverters, for an asymmetrical six-phase induction motor VSI fed drive. Two three phase inverters fed from a single capacitor is used on the open-end side of the motor, to suppress 6n +/- 1; n = odd order harmonics. A PWM scheme that can suppress the harmonics, as well as balance the capacitor voltage is also proposed. The capacitor fed inverters are switched so that the fundamental voltage is not affected. The proposed scheme is verified using MATLAB Simulink simulation at different speeds. The effectiveness of the scheme is demonstrated by comparing the results with those obtained by disabling the capacitor fed inverters. Experimental results are also provided to validate the functionality of the proposed controller.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern pulse-width-modulated (PWM) rectifiers use LC L filters that can be applied in both the common mode and differential mode to obtain high-performance filtering. Interaction between the passive L and C components in the filter leads to resonance oscillations. These oscillations need to be damped either by the passive damping or active damping. The passive damping increases power loss and can reduce the effectiveness of the filter. Methods of active damping, using control strategy, are lossless while maintaining the effectiveness of the filters. In this paper, an active damping strategy is proposed to damp the oscillations in both line-to-line and line-to-ground. An approach based on pole placement by the state feedback is used to actively damp both the differential-and common-mode filter oscillations. Analytical expressions for the state-feedback controller gains are derived for both continuous and discrete-time model of the filter. Tradeoff in selection of the active damping gain on the lower order power converter harmonics is analyzed using a weighted admittance function. Experimental results on a 10-kVA laboratory prototype PWM rectifier are presented. The results validate the effectiveness of the active damping method, and the tradeoff in the settings of the damping gain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear pore complexes (NPCs) are very selective filters that sit on the membrane of the nucleus and monitor the transport between the cytoplasm and the nucleoplasm. For the central plug of NPC two models have been suggested in the literature. The first suggests that the plug is a reversible hydrogel while the other suggests that it is a polymer brush. Here we propose a model for the transport of a protein through the plug, which is general enough to cover both the models. The protein stretches the plug and creates a local deformation, which together with the protein, we refer to as the bubble. We start with the free energy for creation of the bubble and consider its motion within the plug. The relevant coordinate is the center of the bubble which executes random walk. We find that for faster relaxation of the gel, the diffusion of the bubble is greater. (C) 2014 Elsevier-B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binaural hearing studies show that the auditory system uses the phase-difference information in the auditory stimuli for localization of a sound source. Motivated by this finding, we present a method for demodulation of amplitude-modulated-frequency-modulated (AM-FM) signals using a ignal and its arbitrary phase-shifted version. The demodulation is achieved using two allpass filters, whose impulse responses are related through the fractional Hilbert transform (FrHT). The allpass filters are obtained by cosine-modulation of a zero-phase flat-top prototype halfband lowpass filter. The outputs of the filters are combined to construct an analytic signal (AS) from which the AM and FM are estimated. We show that, under certain assumptions on the signal and the filter structures, the AM and FM can be obtained exactly. The AM-FM calculations are based on the quasi-eigenfunction approximation. We then extend the concept to the demodulation of multicomponent signals using uniform and non-uniform cosine-modulated filterbank (FB) structures consisting of flat bandpass filters, including the uniform cosine-modulated, equivalent rectangular bandwidth (ERB), and constant-Q filterbanks. We validate the theoretical calculations by considering application on synthesized AM-FM signals and compare the performance in presence of noise with three other multiband demodulation techniques, namely, the Teager-energy-based approach, the Gabor's AS approach, and the linear transduction filter approach. We also show demodulation results for real signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop an optical system for generating multiple light sheets. This is enabled by employing a special class of spatial filters in a cylindrical lens geometry. The proposed binary filter placed at the back aperture of the cylindrical lens results in the generation of a periodic transverse pattern extending along the z axis (i.e., multiple light sheets). Experimental results confirm the generation of multiple light sheets of thickness 6.6 mu m with an intersheet spacing of 13.4 mu m. The proposed imaging technique may facilitate three-dimensional imaging in nano-optics, fluorescence microscopy, and nanobiology. (C) 2014 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using high-resolution observations of nearly co-temporal and co-spatial Solar Optical Telescope spectropolarimeter and X-Ray Telescope coronal X-ray data onboard Hinode, we revisit the problematic relationship between global magnetic quantities and coronal X-ray brightness. Co-aligned vector magnetogram and X-ray data were used for this study. The total X-ray brightness over active regions is well correlated with integrated magnetic quantities such as the total unsigned magnetic flux, the total unsigned vertical current, and the area-integrated square of the vertical and horizontal magnetic fields. On accounting for the inter-dependence of the magnetic quantities, we inferred that the total magnetic flux is the primary determinant of the observed integrated X-ray brightness. Our observations indicate that a stronger coronal X-ray flux is not related to a higher non-potentiality of active-region magnetic fields. The data even suggest a slightly negative correlation between X-ray brightness and a proxy of active-region non-potentiality. Although there are small numerical differences in the established correlations, the main conclusions are qualitatively consistent over two different X-ray filters, the Al-poly and Ti-poly filters, which confirms the strength of our conclusions and validate and extend earlier studies that used low-resolution data. We discuss the implications of our results and the constraints they set on theories of solar coronal heating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new stabilization scheme, based on a stochastic representation of the discretized field variables, is proposed with a view to reduce or even eliminate unphysical oscillations in the mesh-free numerical simulations of systems developing shocks or exhibiting localized bands of extreme deformation in the response. The origin of the stabilization scheme may be traced to nonlinear stochastic filtering and, consistent with a class of such filters, gain-based additive correction terms are applied to the simulated solution of the system, herein achieved through the element-free Galerkin method, in order to impose a set of constraints that help arresting the spurious oscillations. The method is numerically illustrated through its Applications to inviscid Burgers' equations, wherein shocks may develop as a result of intersections of the characteristics, and to a gradient plasticity model whose response is often characterized by a developing shear band as the external load is gradually increased. The potential of the method in stabilized yet accurate numerical simulations of such systems involving extreme gradient variations in the response is thus brought forth. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electromagnetic Interference (EMI) noise is one of the major issues during the design of the grid-tied power converters. Presence of high dv/dt in Common Mode (CM) voltage, excites the parasitic capacitances and causes injection of narrow peaky current to ground. This results in high EMI noise level. A topology consisting of a single phase PWM-rectifier with LCL filter, utilising bipolar PWM method is proposed which reduces the EMI noise level by more than 30dB. This filter topology is shown to be insensitive to the switching delays between the legs of the inverter. The proposed topology eliminates high dv/dt from the dc-bus CM voltage by making it sinusoidal. Hence, the high frequency CM current injection to ground is minimized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the problem of intercepting highly maneuverable threats using seeker-less interceptors that operate in the command guidance mode. These systems are more prone to estimation errors than standard seeker-based systems. In this paper, an integrated estimation/guidance (IEG) algorithm, which combines interactive multiple model (IMM) estimator with differential game guidance law (DGL), is proposed for seeker-less interception. In this interception scenario, the target performs an evasive bang-bang maneuver, while the sensor has noisy measurements and the interceptor is subject to acceleration bound. The IMM serves as a basis for the synthesis of efficient filters for tracking maneuvering targets and reducing estimation errors. The proposed game-based guidance law for two-dimensional interception, later extended to three-dimensional interception scenarios, is used to improve the endgame performance of the command-guided seeker-less interceptor. The IMM scheme and an optimal selection of filters, to cater to various maneuvers that are expected during the endgame, are also described. Furthermore, a chatter removal algorithm is introduced, thus modifying the differential game guidance law (modified DGL). A comparison between modified DGL guidance law and conventional proportional navigation guidance law demonstrates significant improvement in miss distance in a pursuer-evader scenario. Simulation results are also presented for varying flight path angle errors. A numerical study is provided which demonstrates the performance of the combined interactive multiple model with game-based guidance law (IMM/DGL). Simulation study is also carried out for combined IMM and modified DGL (IMM/modified DGL) which exhibits the superior performance and viability of the algorithm reducing the chattering phenomenon. The results are illustrated by an extensive Monte Carlo simulation study in the presence of estimation errors.