982 resultados para Keywords: Hadron-Hadron Scattering
Resumo:
The kaon electromagnetic form factor is extracted from both components of the current: J(+) and J(-) with a pseudo-scalar coupling of the quarks to the meson. The pair production process does not contribute to J(+) in the Drell-Yan frame (q(+) = 0). However, the pair production process contribution is different from zero in J(-) and this contribution is necessary to keep the rotational symmetry properties of the current.
Resumo:
The aim of this work is to implement the mechanism of link rearrangement predicted in the strong coupling limit of Hamiltonian lattice QCD - in a constituent quark model in which constituent quarks, links and junctions are the dominant degrees of freedom. The implications of link rearrangement for the meson-meson interaction are investigated.
Resumo:
The scattering of orthopositronium (Ps) by hydrogen atoms has been investigated in a five-state coupled-channel model allowing for Ps(1s)H(2s,2p) and Ps(2s,2p)H(1s) excitations using a recently proposed electron-exchange model potential. The higher (n greater than or equal to 3) excitations and ionization of the Ps atom are calculated using the first Born approximation. Calculations are reported of scattering lengths, phase shifts. elastic, Ps and H excitation, and total cross sections. Remarkable correlations are observed between the S-wave Ps-H binding energy and the singlet scattering length, effective range, and resonance energy obtained in various model calculations. These correlations suggest that if a Ps-H dynamical model yields the correct result for one of these four observables, it is expected to lead to the correct result for the other three. The present model, which is constructed so as to reproduce the Ps-H resonance at 4.01 eV, automatically yields a Ps-H bound state at - 1.05 eV that compares well with the accurate value of - 1.067 eV. The model leads to a singlet scattering length of 3.72a(0) and effective range of 1.67a(0), whereas the correlations suggest the precise values of 3.50a(0) and 1.65a(0) for these observables, respectively. [S1050-2947(99)07703-3].
Resumo:
The scattering of ortho-positronium (Ps) by H-2 has been investigated using a three-Ps-state (Ps(1s,2s, 2p)H-2(X (1)Sigma(g)(+))) coupled-channel model and using the Born approximation for higher excitations and ionization of Ps and B (1)Sigma(u)(+) and b (3)Sigma(u)(+) excitations of H-2. We employ a recently proposed time-reversal-symmetric non-local electron-exchange model potential. We present a calculational scheme for solving the body-frame fixed-nuclei coupled-channel scattering equations for Ps-H-2, which simplifies the numerical solution technique considerably. Ps ionization is found to have the leading contribution to target-elastic and all target-inelastic processes. The total cross sections at low and medium energies are in good agreement with experiment.
Resumo:
The goal of this article is to derive the Feynman rules involving single charginos, neutralinos, double charged gauge bosons, and sleptons in a 3-3-1 supersymmetric model. Using these Feynman rules we calculate the production of double charged charginos with neutralinos and also the production of a pair of single charged charginos, both in an electron-electron linear collider.
Resumo:
The scattering of positrons off sodium targets has been investigated using the coupled static model. The sodium atom is represented by the one-active-electron model in which all the electrons of the target have been considered explicitly and the loosely bound valence electron is only involved in transitions. The scattering parameters are presented at low and medium energies. Appreciable differences are noticed between the present results and those obtained by the one-electron model with and without the core potential.
Resumo:
The effect of continuous emission hypothesis on the two-pion Bose-Einstein correlation is discussed and compared with the corresponding results based on the usual freeze-out ansatz. Sizable differences in the correlation function are observed when comparing these two scenarios of the decoupling process. They could lead to entirely different interpretation of properties of the hot matter formed in high-energy heavy-ion collisions.
Resumo:
The so-called conformal affine Toda theory coupled to the matter fields (CATM), associated to the (s) over capl(2) affine Lie algebra, is studied. The conformal symmetry is fixed by setting a connection to zero, then one defines an off-critical model, the affine Toda model coupled to the matter (ATM). Using the dressing transformation method we construct the explicit forms of the two-soliton classical solutions, and show that a physical bound soliton-antisoliton pair (breather) does not exist. Moreover, we verify that these solutions share some features of the sine-Gordon (massive Thirring) solitons, and satisfy the classical equivalence of topological and Noether currents in the ATM model. We show, using bosonization techniques that the ATM theory decouples into a sine-Gordon model and a free scalar. Imposing the Noether and topological currents equivalence as a constraint, one can show that the ATM model leads to a bag model like mechanism for the confinement of the color charge inside the sine-Gordon solitons (baryons).
Resumo:
We discuss two-dimensional Bose-Einstein Condensates (BEC) under time-periodic variation of the scattering length. In particular we argue that for high-frequency variation there exist stable self-confined condensates without an external trap, when the do component of the scattering length is negative. Our results are based on a variational approximation, on direct averaging of the Gross-Pitaevskii equation and on numerical simulations.
Resumo:
Effective chiral Lagrangians involving constituent quarks, Goldstone bosons and long-distance gluons are believed to describe the strong interactions in an intermediate energy region between the confinement scale and the chiral symmetry breaking scale. Baryons and mesons in such a description are bound states of constituent quarks. We discuss the combined use of the techniques of effective chiral field theory and of the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between two nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of nuclear matter using this formalism.
Resumo:
The description of the short-range part of the nucleon forces in terms of quark degrees of freedom is tested by supplementing, to the short range quark cluster model, a long range mesonic force well founded theoretically.
Resumo:
The scattering of photons by a static gravitational field, treated as an external field, is discussed in the context of gravity with higher derivatives. It is shown that the R-2 sector of the theory does not contribute to the photon scattering, whereas the R-mu nu(2) sector produces dispersive (energy-dependent) photon propagation.
Resumo:
We study the macroscopic quantum tunneling, self-trapping phenomena in two weakly coupled Bose-Einstein condensates with periodically time-varying atomic scattering length.The resonances in the oscillations of the atomic populations are investigated. We consider oscillations in the cases of macroscopic quantum tunneling and the self-trapping regimes. The existence of chaotic oscillations in the relative atomic population due to overlaps between nonlinear resonances is showed. We derive the whisker-type map for the problem and obtain the estimate for the critical amplitude of modulations leading to chaos. The diffusion coefficient for motion in the stochastic layer near separatrix is calculated. The analysis of the oscillations in the rapidly varying case shows the possibility of stabilization of the unstable pi-mode regime. (C) 2000 Published by Elsevier B.V. B.V. PACS: 03.75.Fi; 05.30.Jp.
Resumo:
We present a convergent variational basis-set calculational scheme for elastic scattering of the positronium atom by the hydrogen atom in S wave. Highly correlated trial functions with appropriate symmetry are needed to achieve convergence. We report convergent results for scattering lengths in atomic units for both singlet (= 3.49 +/-0.20) and triplet (= 2.46 +/-0.10) states.
Resumo:
Many-body systems of composite hadrons are characterized by processes that involve the simultaneous presence of hadrons and their constituents. We briefly review several methods that have been devised to study such systems and present a novel method that is based on the ideas of mapping between physical and ideal Fock spaces. The method, known as the Fock-Tani representation, was invented years ago in the context of atomic physics problems and was recently extended to hadronic physics. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, Hermitian Hamiltonians with a clear physical interpretation are obtained. The use of the method in connection with the linked-cluster formalism to describe short-range correlations and quark deconfinement effects in nuclear matter is discussed. As an application of the method, an effective nucleon-nucleon interaction is derived from a constituent quark model and used to obtain the equation of state of nuclear matter in the Hartree-Fock approximation.