939 resultados para K-functional
Resumo:
Strong binding of isolated carbon dioxide (CO2) on aluminium nitride (AlN) single walled nanotubes is verified using two different functionals. Two optimized configurations corresponding to physisorption and chemisorption are linked by a low energy barrier, such that the chemisorbed state is accessible and thermodynamically favored at low temperatures. In contrast, N2 is found only to form a physisorbed complex with the AlN nanotube, suggesting the potential application of aluminium nitride based materials for CO2 fixation. The effect of nanotube diameter on gas adsorption properties is also discussed. The diameter is found to have an important effect on the chemisorption of CO2, but has little effect on the physisorption of either CO2 or N2.
Resumo:
The adsorption of carbon dioxide and nitrogen molecules on aluminum nitride (AlN) nanostructures has been explored using first-principle computational methods. Optimized configurations corresponding to physisorption and, subsequentially, chemisorption of CO2 are identified, in contrast to N2, for which only a physisorption structure is found. Transition-state searches imply a low energy barrier between the physisorption and chemisorption states for CO2 such that the latter is accessible and thermodynamically favored at room temperature. The effective binding energy of the optimized chemisorption structure is apparently larger than those for other CO2 adsorptive materials, suggesting the potential for application of aluminum nitride nanostructures for carbon dioxide capture and storage.
Resumo:
An ab initio density functional theory (DFT) study with correction for dispersive interactions was performed to study the adsorption of N2 and CO2 inside an (8, 8) single-walled carbon nanotube. We find that the approach of combining DFT and van der Waals correction is very effective for describing the long-range interaction between N2/CO2 and the carbon nanotube (CNT). Surprisingly, exohedral doping of an Fe atom onto the CNT surface will only affect the adsorption energy of the quadrupolar CO2 molecule inside the CNT (20–30%), and not that of molecular N2. Our results suggest the feasibility of enhancement of CO2/N2 separation in CNT-based membranes by using exohedral doping of metal atoms.
Resumo:
Recent work [S. Chaudhuri, J.T. Muckerman, J. Phys. Chem. B 109 (2005) 6952] reported that two Ti-substituted atoms on an Al(0 0 1) surface can form a catalytically active site for the dissociation of H2, but the diffusion barrier of atomic H away from Ti site is as high as 1.57 eV. By using ab initio density functional calculations, we found that two hydrogen molecules can dissociate on isolated-Ti atom doped Al(0 0 1) surface with small activation barriers (0.21 and 0.235 eV for first and second H2, respectively). Additionally, the diffusion barrier of atomic H away from Ti site is also moderate (0.47 eV). These results contribute further towards understanding the improved kinetics observed in recycling of hydrogen with Ti-doped NaAlH4.
Resumo:
In this work, ab initio spin-polarised Density Functional Theory (DFT) calculations are performed to study the interaction of a Ti atom with a NaAlH4(001) surface. We confirm that an interstitially located Ti atom in the NaAlH4 subsurface is the most energetically favoured configuration as recently reported (Chem. Comm. (17) 2006, 1822). On the NaAlH4(001) surface, the Ti atom is most stable when adsorbed between two sodium atoms with an AlH4 unit beneath. A Ti atom on top of an Al atom is also found to be an important structure at low temperatures. The diffusion of Ti from the Al-top site to the Na-bridging site has a low activation barrier of 0.20 eV and may be activated at the experimental temperatures (∼323 K). The diffusion of a Ti atom into the energetically favoured subsurface interstitial site occurs via the Na-bridging surface site and is essentially barrierless.
Resumo:
NaAlH4 and LiBH4 are potential candidate materials for mobile hydrogen storage applications, yet they have the drawback of being highly stable and desorbing hydrogen only at elevated temperatures. In this letter, ab initio density functional theory calculations reveal how the stabilities of the AlH4 and BH4 complex anions will be affected by reducing net anionic charge. Tetrahedral AlH4 and BH4 complexes are found to be distorted with the decrease of negative charge. One H-H distance becomes smaller and the charge density will overlap between them at a small anion charge. The activation energies to release of H2 from AlH4 and BH4 complexes are thus greatly decreased. We demonstrate that point defects such as neutral Na vacancies or substitution of a Na atom with Ti on the NaAlH4(001) surface can potentially cause strong distortion of neighboring AlH4 complexes and even induce spontaneous dehydrogenation. Our results help to rationalize the conjecture that the suppression of charge transfer to AlH4 and BH4 anion as a consequence of surface defects should be very effective for improving the recycling performance of H2 in NaAlH4 and LiBH4. The understanding gained here will aid in the rational design and development of hydrogen storage materials based on these two systems.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
We introduce a broad lattice manipulation technique for expressive cryptography, and use it to realize functional encryption for access structures from post-quantum hardness assumptions. Specifically, we build an efficient key-policy attribute-based encryption scheme, and prove its security in the selective sense from learning-with-errors intractability in the standard model.
Resumo:
Next Generation Sequencing (NGS) has revolutionised molec- ular biology, allowing routine clinical sequencing. NGS data consists of short sequence reads, given context through downstream assembly and annotation, a process requiring reads consistent with the assumed species or species group. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans, with some strains exhibiting antibiotic resistance. Here we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from other pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.
Resumo:
Members of the insulin-like growth factor (IGF) family have been shown to play critical roles in normal growth and development, as well as in tumour biology. The IGF system is complex and the biological effects of the IGFs are determined by their diverse interactions between many molecules, including their interactions with extracellular matrix (ECM) proteins. Recent studies have demonstrated that IGFs associate with the ECM protein vitronectin (VN) through IGF-binding proteins (IGFBP) and that this interaction modulates IGF-stimulated biological functions, namely cell migration and cell survival through the cooperative involvement of the type-I IGF receptor (IGF-1R) and VN-binding integrins. Since IGFs play important roles in the transformation and progression of breast cancer and VN has been found to be over-expressed at the leading edge of breast tumours, this project aimed to describe the effects of IGF-I:VN interactions on breast cell function. This was undertaken to dissect the molecular mechanisms underlying IGF-I:VN-induced responses and to design inhibitors to block the effects of such interactions. The studies described herein demonstrate that the increase in migration of MCF-7 breast cancer cells in response to the IGF-I:IGFBP-5:VN complex is accompanied by differential expression of genes known to be involved in migration, invasion and/or survival, including Tissue-factor (TF), Stratifin (SFN), Ephrin-B2, Sharp-2 and PAI-1. This „migration gene signature‟ was confirmed using real-time PCR analysis. Substitution of the native IGF-I within the IGF-I:IGFBP:VN complex with the IGF-I analogue, \[L24]\[A31]-IGF-I, which has a reduced affinity for the IGF-1R, failed to stimulate cell migration and interestingly, also failed to induce the differential gene expression. This supports the involvement of the IGF-1R in mediating these changes in gene expression. Furthermore, lentiviral shRNA-mediated stable knockdown of TF and SFN completely abrogated the increased cell migration induced by IGF-I:IGFBP:VN complexes in MCF-7 cells. Indeed, when these cells were grown in 3D Matrigel™ cultures a decrease in the overall size of the 3D spheroids in response to the IGF-I:IGFBP:VN complexes was observed compared to the parental MCF-7 cells. This suggests that TF and SFN have a role in complex-stimulated cell survival. Moreover, signalling studies performed on cells with the reduced expression of either TF or SFN had a decreased IGF-1R activation, suggesting the involvement of signalling pathways downstream of IGF-1R in TF- and/or SFN-mediated cell migration and cell survival. Taken together, these studies provide evidence for a common mechanism activated downstream of the IGF-1R that induces the expression of the „migration gene signature‟ in response to the IGF-I:IGFBP:VN complex that confers breast cancer cells the propensity to migrate and survive. Given the functional significance of the interdependence of ECM and growth factor (GF) interactions in stimulating processes key to breast cancer progression, this project aimed at developing strategies to prevent such growth factor:ECM interactions in an effort to inhibit the downstream functional effects. This may result in the reduction in the levels of ECM-bound IGF-I present in close proximity to the cells, thereby leading to a reduction in the stimulation of IGF-1R present on the cell surface. Indeed, the inhibition of IGF-I-mediated effects through the disruption of its association with ECM would not alter the physiological levels of IGF-I and potentially only exert effects in situations where abnormal over expression of ECM proteins are found; namely carcinomas and hyperproliferative diseases. In summary, this PhD project has identified novel, innovative and realistic strategies that can be used in vitro to inhibit the functions exerted by the IGF-I:IGFBP:VN multiprotein complexes critical for cancer progression, with a potential to be translated into in vivo investigations. Furthermore, TF and SFN were found to mediate IGF-I:IGFBP:VN-induced effects, thereby revealing their potential to be used as therapeutic targets or as predictive biomarkers for the efficacy of IGF-1R targeting therapies in breast cancer patients. In addition to its therapeutic and clinical scope, this PhD project has significantly contributed to the understanding of the role of the IGF system in breast tumour biology by providing valuable new information on the mechanistic events underpinning IGF-I:VN-mediated effects on breast cell functions. Furthermore, this is the first instance where favourable binding sites for IGF-II, IGFBP-3 and IGFBP-5 on VN have been identified. Taken together, this study has functionally characterised the interactions between IGF-I and VN and through innovative strategies has provided a platform for the development of novel therapies targeting these interactions and their downstream effects.
Resumo:
Migraine is a common neurological disorder characterised by temporary disabling attacks of severe head pain and associated disturbances. There is significant evidence to suggest a genetic aetiology to the disease however few causal mutations have been conclusively linked to the migraine subtypes Migraine with (MA) or without Aura (MO). The Potassium Channel, Subfamily K, member 18 (KCNK18) gene, coding the potassium channel TRESK, is the first gene in which a rare mutation resulting in a non-functional truncated protein has been identified and causally linked to MA in a multigenerational family. In this study, three common polymorphisms in the KCNK18 gene were analysed for genetic variation in an Australian case-control migraine population consisting of 340 migraine cases and 345 controls. No association was observed for the polymorphisms examined with the migraine phenotype or with any haplotypes across the gene. Therefore even though the KCNK18 gene is the only gene to be causally linked to MA our studies indicate that common genetic variation in the gene is not a contributor to MA.
Resumo:
Objectives The aim of this study was to evaluate the role of cardiac K+ channel gene variants in families with atrial fibrillation (AF). Background The K+ channels play a major role in atrial repolarization but single mutations in cardiac K+ channel genes are infrequently present in AF families. The collective effect of background K+ channel variants of varying prevalence and effect size on the atrial substrate for AF is largely unexplored. Methods Genes encoding the major cardiac K+ channels were resequenced in 80 AF probands. Nonsynonymous coding sequence variants identified in AF probands were evaluated in 240 control subjects. Novel variants were characterized using patch-clamp techniques and in silico modeling was performed using the Courtemanche atrial cell model. Results Nineteen nonsynonymous variants in 9 genes were found, including 11 rare variants. Rare variants were more frequent in AF probands (18.8% vs. 4.2%, p < 0.001), and the mean number of variants was greater (0.21 vs. 0.04, p < 0.001). The majority of K+ channel variants individually had modest functional effects. Modeling simulations to evaluate combinations of K+ channel variants of varying population frequency indicated that simultaneous small perturbations of multiple current densities had nonlinear interactions and could result in substantial (>30 ms) shortening or lengthening of action potential duration as well as increased dispersion of repolarization. Conclusions Families with AF show an excess of rare functional K+ channel gene variants of varying phenotypic effect size that may contribute to an atrial arrhythmogenic substrate. Atrial cell modeling is a useful tool to assess epistatic interactions between multiple variants.
Resumo:
Numerous studies have reported associations between IGF-I and other extra cellular matrix (ECM) proteins, including fibronectin (FN), integrins, IGF-binding proteins (IGFBPs) and through IGFBPs, with vitronectin (VN). Nevertheless, the precise nature and mechanisms of these interactions are still being characterised. In this paper, we discuss transglutaminases (TGases) as a constituent of the ECM and provide evidence for the first time that IGF-I is a lysine (K)-donor substrate to TGases. When IGF-I was incubated with an alpha-2 plasmin inhibitor-derived Q peptide in the presence of tissue transglutaminase (TG2), an IGF-I:Q peptide cross-linked species was detected using Western immunoblotting and confirmed by mass spectrometry. Similar findings were observed in the presence of Factor XIIIa (FXIIIa) TGase. To identify the precise location of this K-donor TGase site/s on IGF-I, all the three IGF-I K-sites, individually and collectively (K27, K65 and K68), were substituted to arginine (R) using site-directed mutagenesis. Incubation of these K→R IGF-I analogues with Q peptide in the presence of TG2 or FXIIIa resulted in the absence of cross-linking in IGF-I analogues bearing arginine substitution at site 68. This established that K68 within the IGF-I D-domain was the principal K-donor site to TGases. We further annotated the functional significance of these K→R IGF-I analogues on IGF-I mediated actions. IGF-I analogues with K→R substitution within the D-domain at K65 and K68 hindered migration of MCF-7 breast carcinoma cells and correspondingly reduced PI3-K/AKT activation. Therefore, this study also provides first insights into a possible functional role of the previously uncharacterised IGF-I D-domain.
Resumo:
Migraine is a common neurological disorder with a significant genetic component. Although a number of linkage and association studies have been undertaken, the number and identity of all migraine susceptibility genes has yet to be defined. The existence of dopaminergic hypersensitivity in migraine has been recognised on a pharmacological basis and some studies have reported genetic association between migraine and dopamine-related gene variants. Our laboratory has previously reported association of migraine with a promoter STR marker in the dopamine beta hydroxylase (DBH) gene. In the present study, we analysed two additional DBH markers in two independent migraine case–control cohorts. These two markers are putative functional SNPs, one within the promoter (−1021C→T) and another SNP (+1603C→T) in exon 11 of the DBH gene. The results showed a significant association for allelic and genotypic frequency distribution between the DBH marker in the promoter and migraine in the first (P = 0.004 and P = 0.012, respectively) and the second (P = 0.013 and P = 0.031, respectively) tested cohorts. There was no association observed between either genotype and/or allelic frequencies for the DBH marker located in exon 11 and migraine (P ≥ 0.05). The promoter DBH marker, reported associated with migraine in this study, has been shown to affect up to 52% of plasma DBH activity. Varying DBH activity levels have been postulated to be involved in migraine process with an increase of dopamine, resulting from a lower DBH activity shown positively correlated with migraine severity. It is plausible that the functional promoter variant of DBH may play a role in the migraine disorder.
Resumo:
Background: The insulin-like growth factor (IGF) system is composed of ligands and receptors which regulate cell proliferation, survival, differentiation and migration. Some functions are regulated via intracellular signaling cascades, others by involvement of the extracellular milieu, including binding proteins and other extracellular matrix proteins. However, understanding of their functions and the exact nature of these interactions remains incomplete. Methods: IGF-I was PEGylated at its lysine sites - K27, K65 and K68. Binding of PEG-IGF-I to the IGFBPs was analyzed using BIAcore and its ability to activate the IGF-IR was assessed using IGF-IR phosphorylation assay. Furthermore, functional consequences of PEGylating the lysine residues of IGF-I was investigated using cell viability and cell migration assays. In addition, particular downstream signaling pathways regularly implicated in these mechanisms were also dissected using phospho-AKT and phospho-ERK1/2 assays. Results: In this study, IGF-I specifically PEGylated at lysine 27 (PEG-K27), 65 (PEG-K65) or 68 (PEG-K68) were employed. Receptor phosphorylation was only reduced by 2-fold with PEG-K65 and PEG-K68 over all the time points tested, and as observed in two cell types, 3T3 fibroblasts and MCF-7 breast cancer cells. PEGylation at K27 resulted in a much larger effect, with more than 10-fold lower activation for 3T3 fibroblasts and a ~3 fold reduced IGF-IR activation for MCF-7 breast cancer cells over 15 minutes. In addition, all PEG-IGF-I variants demonstrated a ten-fold reduction in the association rate to IGF binding proteins (IGFBPs). Functionally, all PEG variants completely lost their ability to induce cell migration in the presence of IGFBP-3/vitronectin (VN) complexes as compared to IGF-I; in contrast, cell viability was fully preserved. Further investigations into the downstream signaling pathways revealed that the PI3-K/AKT pathway was preferentially affected upon treatment with the PEG-IGF-I variants compared to the MAPK/ERK pathway. Conclusion: PEGylation of IGF-I has an impact on cell migration but not cell viability. General significance: PEG-IGF-I may differentially modulate IGF-I mediated functions that are dependent on its interaction with its receptor as well as key extracellular proteins such as VN and IGFBPs.