981 resultados para Isothermal Remanent Magnetization
Resumo:
In brackish groundwater desalination, high recovery ratio (of fresh water from saline feed) is desired to minimise concentrate reject. To this effect, previous studies have developed a batch reverse osmosis (RO) desalination system, DesaLink, which proposed to expand steam in a reciprocating piston cylinder and transmit the driving force through a linkage crank mechanism to pressurise batches of saline water (recirculating) in a water piston cylinder unto RO membranes. However, steam is largely disadvantaged at operation from low temperature (< 150oC) thermal sources; and organic working fluids are more viable, though, the obtainable thermal cycle efficiencies are generally low with low temperatures. Consequently, this thesis proposed to investigate the use of organic working fluid Rankine cycle (ORC) with isothermal expansion, to drive the DesaLink machine, at improved thermal efficiency from low temperature thermal sources. Following a review of the methods of achieving isothermal expansion, ‘liquid flooded expansion’ and ‘expansion chamber surface heating’ were identified as potential alternative methods. Preliminary experimental comparative analysis of variants of the heated expansion chamber technique of effecting isothermal expansion favoured a heated plain wall technique, and as such was adopted for further optimisation and development. Further, an optimised isothermal ORC engine was built and tested at < 95oC heat source temperature, with R245fa working fluid – which was selected from 16 working fluids that were analysed for isothermal operation. Upon satisfactory performance of the test engine, a larger (10 times) version was built and coupled to drive the DesaLink system. Operating the integrated ORC-RO DesaLink system, gave freshwater (approximately 500 ppm) production of about 12 litres per hour (from 4000 ppm feed water) at a recovery ratio of about 0.7 and specific energy consumption of 0.34 kWh/m3; and at a thermal efficiency of 7.7%. Theoretical models characterising the operation and performance of the integrated system was developed and utilised to access the potential field performance of the system, when powered by two different thermal energy sources – solar and industrial bakery waste heat – as case studies.
Resumo:
Quantitative analysis of solid-state processes from isothermal microcalorimetric data is straightforward if data for the total process have been recorded and problematic (in the more likely case) when they have not. Data are usually plotted as a function of fraction reacted (α); for calorimetric data, this requires knowledge of the total heat change (Q) upon completion of the process. Determination of Q is difficult in cases where the process is fast (initial data missing) or slow (final data missing). Here we introduce several mathematical methods that allow the direct calculation of Q by selection of data points when only partial data are present, based on analysis with the Pérez-Maqueda model. All methods in addition allow direct determination of the reaction mechanism descriptors m and n and from this the rate constant, k. The validity of the methods is tested with the use of simulated calorimetric data, and we introduce a graphical method for generating solid-state power-time data. The methods are then applied to the crystallization of indomethacin from a glass. All methods correctly recovered the total reaction enthalpy (16.6 J) and suggested that the crystallization followed an Avrami model. The rate constants for crystallization were determined to be 3.98 × 10-6, 4.13 × 10-6, and 3.98 × 10 -6 s-1 with methods 1, 2, and 3, respectively. © 2010 American Chemical Society.
Resumo:
We report the results of direct measurement of remanent hysteresis loops on nanochains of BiFeO3 at room temperature under zero and ∼20 kOe magnetic field. We noticed a suppression of remanent polarization by nearly ∼40% under the magnetic field. The powder neutron diffraction data reveal significant ion displacements under a magnetic field which seems to be the origin of the suppression of polarization. The isolated nanoparticles, comprising the chains, exhibit evolution of ferroelectric domains under dc electric field and complete 180 switching in switching-spectroscopy piezoresponse force microscopy. They also exhibit stronger ferromagnetism with nearly an order of magnitude higher saturation magnetization than that of the bulk sample. These results show that the nanoscale BiFeO3 exhibits coexistence of ferroelectric and ferromagnetic order and a strong magnetoelectric multiferroic coupling at room temperature comparable to what some of the type-II multiferroics show at a very low temperature.
Resumo:
Magnetotactic bacteria intracellularly biomineralize magnetite of an ideal grain size for recording palaeomagnetic signals. However, bacterial magnetite has only been reported in a few pre-Quaternary records because progressive burial into anoxic diagenetic environments causes its dissolution. Deep-sea carbonate sequences provide optimal environments for preserving bacterial magnetite due to low rates of organic carbon burial and expanded pore-water redox zonations. Such sequences often do not become anoxic for tens to hundreds of metres below the seafloor. Nevertheless, the biogeochemical factors that control magnetotactic bacterial populations in such settings are not well known. We document the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout Eocene pelagic carbonates from the southern Kerguelen Plateau, Southern Ocean. We provide evidence that iron fertilization, associated with increased aeolian dust flux, resulted in surface water eutrophication in the late Eocene that controlled bacterial magnetite abundance via export of organic carbon to the seafloor. Increased flux of aeolian iron-bearing phases also delivered iron to the seafloor, some of which became bioavailable through iron reduction. Our results suggest that magnetotactic bacterial populations in pelagic settings depend crucially on particulate iron and organic carbon delivery to the seafloor.
Resumo:
Rock magnetic measurements were performed on sediments above 20 meters below seafloor (mbsf) (general) and above 2.5 mbsf (detailed) at Sites 1109, 1110, and 1115 (Ocean Drilling Program Leg 180) in the western Woodlark Basin. Rock magnetic parameters imply the presence of magnetite as a principal magnetic mineral in the sediments. The hysteresis ratios lay in the pseudo-single domain field and generally showed the trend close to that for the mixture of single domain and multidomain magnetite The sediments in the oxidized zones at the top at Sites 1109 and 1115 provided a different trend in the logarithmic plot of the hysteresis ratios, and the oxidized samples were characterized by higher coercivity.
Resumo:
Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.
Resumo:
The aim of this study was to develop a multiplex loop-mediated isothermal amplification (LAMP) method capable of detecting Escherichia coli generally and verocytotoxigenic E. coli (VTEC) specifically in beef and bovine faeces. The LAMP assay developed was highly specific (100%) and able to distinguish between E. coli and VTEC based on the amplification of the phoA, and stx1 and/or stx2 genes, respectively. In the absence of an enrichment step, the limit of detection 50% (LOD50) of the LAMP assay was determined to be 2.83, 3.17 and 2.83-3.17 log CFU/g for E. coli with phoA, stx1 and stx2 genes, respectively, when artificially inoculated minced beef and bovine faeces were tested. The LAMP calibration curves generated with pure cultures, and spiked beef and faeces, suggested that the assay had good quantification capability. Validation of the assay, performed using retail beef and bovine faeces samples, demonstrated good correlation between counts obtained by the LAMP assay and by a conventional culture method, but suggested the possibility of false negative LAMP results for 12.5-14.7% of samples tested. The multiplex LAMP assay developed potentially represents a rapid alternative to culture for monitoring E.coli levels in beef or faeces and it would provide additional information on the presence of VTEC. However, some further optimisation is needed to improve detection sensitivity.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The effect of isothermal aging on the harmonic vibration durability of Sn3.0Ag0.5Cu solder interconnects is examined. Printed wiring assemblies with daisy-chained leadless chip resistors (LCRs) are aged at 125°C for 0, 100, and 500 hours. These assemblies are instrumented with accelerometers and strain gages to maintain the same harmonic vibration profile in-test, and to characterize PWB behavior. The tested assemblies are excited at their first natural frequencies until LCRs show a resistance increase of 20%. Dynamic finite element models are employed to generate strain transfer functions, which relate board strain levels observed in-test to respective solder strain levels. The transfer functions are based on locally averaged values of strains in critical regions of the solder and in appropriate regions of the PWB. The vibration test data and the solder strains from FEA are used to estimate lower-bound material fatigue curves for SAC305 solder materials, as a function of isothermal pre-aging.
Resumo:
In this paper agricultural waste; Canarium schweinfurthii was explored for the sequestering of Fe and Pb ions from wastewater solution after carbonization and chemical treatment at 400oC. Optimum time of 30 and 150 min with percentage removal of 95 and 98% at optimum pH of 2 and 6 was obtained for Fe and Pb ions. Kinetics model followed pseudofirst order as sum of absolute error (EABS) between Qe and Qc greater than that of pseudo second order. Parameters evaluated from isothermal equation (Freundlich and Langmuir) showed that KL and QO for Fe > Pb and R2 for Langmuir> Freundlich. The study reveals the suitability of the adsorbent for sequestering of Fe and Pb ions from industrial wastewater.