843 resultados para Intramuscular triglyceride


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivo: o objetivo deste trabalho foi estudar os aspectos morfológicos e ultra-estruturais na gênese de capilares sanguíneos em músculo esquelético do membro caudal de ratos submetidos à isquemia sob a ação da Prostaglandina E1 (PGE1), administrada por via intramuscular ou endovenosa. Métodos: foram utilizados 60 ratos (Rattus norvegicus albinus), linhagem Wistar-UEM, distribuídos aleatoriamente em três grupos de 20, redistribuídos igualmente em dois subgrupos, observados no 7o e 14o dias, sendo um grupo controle onde apenas foi provocada a isquemia no membro, outro com a isquemia e a injeção da PGE1 via intramuscular (IM), e outro com a isquemia e a injeção da PGE1 endovenosa (EV). Para análise dos resultados, foram realizadas a coloração com hematoxilina & eosina (HE), a imuno-histoquímica e a microscopia eletrônica de transmissão (MET). Resultados: constatou-se um aumento estatisticamente significante no número de capilares nos subgrupos com o uso da PGE1 IM e EV, através da contagem nos cortes corados com HE. Houve marcação de capilares e vasos de maior calibre nestes mesmos subgrupos, porém, esta reação não foi eficiente para a quantificação dos capilares. Na MET encontraram-se evidências de formação de novos capilares. Conclusões: a PGE1, administrada por via IM ou EV, promoveu, após 14 dias de observação, um aumento no número de capilares no músculo esquelético de ratos submetido à isquemia, identificáveis histologicamente com a coloração em HE. Na análise ultra-estrutural encontraram-se alterações que sugerem, nos animais sob a ação da PGE1, que a neoformação vascular possa ter ocorrido por angiogênese e vasculogênese. A imuno-coloração, apesar da marcação de capilares e vasos maiores, não permitiu estabelecer uma correlação com o aumento de vasos encontrados na coloração com HE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we elucidate the role of polyunsaturated fatty acids (PUFAs) in the prevention of cardiovascular diseases, focusing the attention on their role in the modulation of acyl composition of cell lipids and of gene expression. Regarding this latter mechanism, the effectiveness of PUFAs as activators of two transcriptional factors, SREBPs and PPARs, have been considered. Two different model system have been used: primary cultures of neonatal rat cardiomyocytes and an human hepatoma cell line (HepG2). Cells have been supplemented with different PUFAs at physiological concentration, and special attention has been devoted to the main n-3 PUFAs, EPA and DHA. PUFAs influence on global gene expression in cardiomyocytes has been evaluated using microarray technique. Furthermore, since it is not fully elucidated which transcription factors are involved in this modulation in the heart, expression and activation of the three different PPAR isoforms have been investigated. Hepatocytes have been used as experimental model system in the evaluation of PUFAs effect on SREBP activity. SREBPs are considered the main regulator of cholesterol and triglyceride synthesis, which occur mainly in the liver. In both experimental models the modification of cell lipid fatty acid composition subsequent to PUFAs supplementation has been evaluated, and related to the effects observed at molecular level. The global vision given by the obtained results may be important for addressing new researches and be useful to educators and policy makers in setting recommendations for reaching optimal health through good nutrition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LRP4, member of the LDLR family, is a multifunctional membrane-bound receptor that is expressed in various tissues. The expression of LRP4 by osteoblasts, its novel interaction with Wnt-signaling inhibitors Dkk1 and SOST, and the lower levels of activated beta-catenin in different bone locations described here, adds another player to the long list of established factors that modulate canonical Wnt-signaling in bone. By demonstrating that in addition to Wise, LRP4 is able to interact with two additional important modulators of Wnt- and BMP-signaling, our perspective of the complexity of the integration of BMP and Wnt-signaling pathways on the osteoblast surface has expanded further. Nevertheless the recently described association of both the SOST and LRP4 genes with BMD in humans, together with our findings suggest that LRP4 plays a physiologically important role in the skeletal development and bone metabolism not only in rodents, but in humans as well. The efficiency with which LRP4 binds both SOST and Dkk1, presumably at the osteoblastic surface, LRP4 may act as a sink and competes with LRP5/6 for the binding of these Wnt antagonists, which then are no longer available for suppression of the signal through the LRP5/6 axis. rnApoE, a 299 amino acid glycoprotein, is a crucial regulator in the uptake of triglyceride, phospholipids, cholesteryl esters, and cholesterol into cells. ApoE has been linked to osteoporosis, and such a role is further strengthened by the present of a high bone mass phenotype in ApoE null mice. Until recently, the effects of respective ApoE isoforms E2, E3, and E4, and their impact on bone metabolism, have been unclear. Here we report that respective human ApoE knockin mice display diverse effects on bone metabolism. ApoE2 mice show decreased trabecular bone volume per total volume in femoral bone and lumbar spine in comparison to ApoE3 and E4 animals. In this context, urinary bone resorption marker DPD is increased in these animals, which is accompanied by a low ratio of osteoclastogenesis markers OPG/RANKL. Interestingly, serum bone formation markers ALP and OCN are diminished in ApoE4 mice. In contrast to this finding, ApoE2 mice show the lowest bone formation of all groups in vivo. These findings cannot be explained by the low receptor-affinity of ApoE2 and subsequent decreased uptake of triglyceride-rich lipoproteins by osteoblasts, resulting in elevated levels of undercarboxylated osteocalcin. Thus, other crucial pathways relevant for bone metabolism, e. g. Wnt/beta-catenin-signaling pathways, must be, compared to the ApoE3/4 isoforms, more affected by the ApoE2 isoform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We hypothesized that network analysis is useful to expose coordination between whole body and myocellular levels of energy metabolism and can identify entities that underlie skeletal muscle's contribution to growth hormone-stimulated lipid handling and metabolic fitness. We assessed 112 metabolic parameters characterizing metabolic rate and substrate handling in tibialis anterior muscle and vascular compartment at rest, after a meal and exercise with growth hormone replacement therapy (GH-RT) of hypopituitary patients (n = 11). The topology of linear relationships (| r | ≥ 0.7, P ≤ 0.01) and mutual dependencies exposed the organization of metabolic relationships in three entities reflecting basal and exercise-induced metabolic rate, triglyceride handling, and substrate utilization in the pre- and postprandial state, respectively. GH-RT improved aerobic performance (+5%), lean-to-fat mass (+19%), and muscle area of tibialis anterior (+2%) but did not alter its mitochondrial and capillary content. Concomitantly, connectivity was established between myocellular parameters of mitochondrial lipid metabolism and meal-induced triglyceride handling in serum. This was mediated via the recruitment of transcripts of muscle lipid mobilization (LIPE, FABP3, and FABP4) and fatty acid-sensitive transcription factors (PPARA, PPARG) to the metabolic network. The interdependence of gene regulatory elements of muscle lipid metabolism reflected the norm in healthy subjects (n = 12) and distinguished the regulation of the mitochondrial respiration factor COX1 by GH and endurance exercise. Our observations validate the use of network analysis for systems medicine and highlight the notion that an improved stochiometry between muscle and whole body lipid metabolism, rather than alterations of single bottlenecks, contributes to GH-driven elevations in metabolic fitness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The burden of abdominal obesity (AO) and its association with other cardiovascular risk factors is not known in coronary artery disease (CAD) patients attending cardiac rehabilitation (CR). The aim of this study was, therefore, to investigate the prevalence of AO and differences in cardiovascular risk factors between AO and non-AO patients. METHODS: 415 consecutive male CAD patients (mean age 58 ± 11 years) attending a three-month outpatient CR programme were assessed. Differences in cardiovascular risk profile, including blood lipids, psychosocial and socioeconomic status and exercise capacity, were compared in relation to AO and corrected for obesity measured by body-mass index (BMI) in a multivariate analysis. RESULTS: Mean waist circumference was 102 ± 11 cm. Patients of lower educational level had a higher prevalence of AO (p = 0.021) than patients with a higher educational level. AO was significantly associated with diabetes (p = 0.003) and hypertension (p <0.001). In AO patients, HDL-C levels were lower (p <0.001) and triglyceride levels higher (p = 0.006) than in non-AO patients. There was no difference in exercise capacity between AO and non-AO patients, but AO patients had a higher resting heart rate (p = 0.021). CONCLUSION: AO is highly prevalent in CAD patients attending CR. AO is, independently of BMI, associated with metabolic lipid disorders and autonomic cardiovascular dysregulation, suggesting an increased cardiovascular risk. AO patients therefore need particular attention during CR and follow-up care.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mucopolysaccharidoses are lysosomal storage disorders that are caused by a deficiency in the enzymes that degrade glycosaminoglycans. The accumulation of glycosaminoglycans affects multiple systems, resulting in coarse facial features, short stature, organomegaly, and variable neurological changes from normal intelligence to severe mental retardation and spasticity. Effects on the musculoskeletal system include dysostosis multiplex, joint stiffness, and muscle shortening. This article reports 2 patients with mucopolysaccharidosis type II (Hunter syndrome) who showed progressive equinus deformity of the feet. Both patients were treated with intramuscular botulinum toxin type A injections in the gastrocnemius and the soleus muscles, followed by serial casting. In both patients, passive range of motion, muscle tone, and gait performance were significantly improved. Botulinum toxin type A injections followed by serial casting are a therapeutic option for contractures in patients with mucopolysaccharidosis. However, the long-term effects and the effect of application in other muscles remain unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE:To determine whether low low-density lipoprotein cholesterol (LDL-C) but not high-density lipoprotein cholesterol (HDL-C) and triglyceride concentrations are associated with worse outcome in a large cohort of ischemic stroke patients treated with IV thrombolysis. METHODS:Observational multicenter post hoc analysis of prospectively collected data in stroke thrombolysis registries. Because of collinearity between total cholesterol (TC) and LDL-C, we used 2 different models with TC (model 1) and with LDL-C (model 2). RESULTS:Of the 2,485 consecutive patients, 1,847 (74%) had detailed lipid profiles available. Independent predictors of 3-month mortality were lower serum HDL-C (adjusted odds ratio [(adj)OR] 0.531, 95% confidence interval [CI] 0.321-0.877 in model 1; (adj)OR 0.570, 95% CI 0.348-0.933 in model 2), lower serum triglyceride levels ((adj)OR 0.549, 95% CI 0.341-0.883 in model 1; (adj)OR 0.560, 95% CI 0.353-0.888 in model 2), symptomatic ICH, and increasing NIH Stroke Scale score, age, C-reactive protein, and serum creatinine. TC, LDL-C, HDL-C, and triglycerides were not independently associated with symptomatic ICH. Increased HDL-C was associated with an excellent outcome (modified Rankin Scale score 0-1) in model 1 ((adj)OR 1.390, 95% CI 1.040-1.860). CONCLUSION:Lower HDL-C and triglycerides were independently associated with mortality. These findings were not due to an association of lipid concentrations with symptomatic ICH and may reflect differences in baseline comorbidities, nutritional state, or a protective effect of triglycerides and HDL-C on mortality following acute ischemic stroke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chiral pharmacokinetics and pharmacodynamics of ketoprofen were investigated in a placebo-controlled study in piglets after intramuscular administration of 6 mg/kg racemic ketoprofen. The absorption half-lives of both enantiomers were short, and S-ketoprofen predominated over R-ketoprofen in plasma. A kaolin-induced inflammation model was used to evaluate the anti-inflammatory, antipyretic and analgesic effects of ketoprofen. Skin temperatures increased after the kaolin injection, but the effect of ketoprofen was small. No significant antipyretic effects could be detected, but body temperatures tended to be lower in the ketoprofen-treated piglets. Mechanical nociceptive threshold testing was used to evaluate the analgesic effects. The piglets in the ketoprofen-treated group had significantly higher mechanical nociceptive thresholds compared to the piglets in the placebo group for 12-24 h following the treatment. Pharmacokinetic/pharmacodynamic modelling of the results from the mechanical nociceptive threshold testing gave a median IC(50) for S-ketoprofen of 26.7 mug/mL and an IC(50) for R-ketoprofen of 1.6 mug/mL. This indicates that R-ketoprofen is a more potent analgesic than S-ketoprofen in piglets. Estimated ED(50) for racemic ketoprofen was 2.5 mg/kg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most mammals, prolactin (PRL) is essential for maintaining lactation, and yet the short-term suppression of PRL during established lactation by bromocriptine has produced inconsistent effects on milk yield in cows and goats. To assess the effect of the long-term inhibition of PRL release in lactating dairy cows, 5 Holstein cows in early lactation received daily intramuscular injections of 1mg of the PRL-release inhibitor quinagolide for 9 wk. Four control cows received the vehicle (water) only. During the last week of the treatments, one udder half was milked once a day (1x) and the other twice a day (2x). Blood samples were harvested at milking in wk -1, 1, 4, and 8. The daily injections of quinagolide reduced milking-induced PRL release but not the basal PRL concentration. Quinagolide induced a faster decline in milk production, which was about 5.3 kg/d lower in the quinagolide-treated cows during the last 4 wk of treatment. During wk 9, the inhibition of milk production by quinagolide was maintained in the udder half that was milked 2x but not in the half milked 1x. Milk production was significantly correlated with the quantity of PRL released at milking. Quinagolide did not affect the release of oxytocin at milking. Serum concentration of insulin-like growth factor-1 was not affected by treatment or correlated with milk production. Serum concentrations of leptin and the calciotropic hormone stanniocalcin were not affected by the treatment. In conclusion, the chronic administration of the PRL-release inhibitor quinagolide decreases milk production in dairy cows. The effect is likely the result of the reduced release of milking-induced PRL and is modulated at the level of the gland by milking frequency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic and endocrine adaptations to support milk production during the transition period vary between individual cows. This variation between cows to adapt to lactation may have a genetic basis. The present field study was carried out to determine hepatic adaptations occurring from late pregnancy through early lactation by measuring mRNA abundance of candidate genes in dairy cows on-farm. Additionally, the objective was to observe the diversity in inter-individual variation for the candidate genes that may give indications where individual adaptations at a molecular level can be found. This study was carried out on-farm including 232 dairy cows (parity >3) from 64 farms in Switzerland. Blood and liver samples were collected on d 20+/-7 before parturition, on d 24+/-2, and on d 89+/-4 after parturition. Blood plasma was assayed for concentrations of glucose, nonesterified fatty acids, beta-hydroxybutyrate, cholesterol, triglycerides, urea, albumin, protein, insulin, insulin-like growth factor-1, leptin, 3,5,3'-triiodothyronine, and thyroxine. Liver samples were obtained at the same time points and were measured for mRNA abundance of 26 candidate genes encoding enzymes and nuclear receptors involved in gluconeogenesis, fatty acid beta-oxidation, fatty acid and triglyceride synthesis, ketogenesis, citric acid cycle, cholesterol synthesis, and the urea cycle. The cows in the present study experienced a marked metabolic load in early lactation, as presented by changes in plasma metabolites and hormones, and responded accordingly with upregulation and downregulation of almost all candidate genes involved in metabolic processes in the liver. The observed inter-individual variation for the candidate genes, which was highest for acetyl-CoA-carboxylase and glycerol-3-phosphate dehydrogenase 2, should be further investigated to unravel the regulation at molecular level for optimal adaptive performance in dairy cows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SCOPE: Xanthohumol (XN), a prenylated antioxidative and anti-inflammatory chalcone from hops, exhibits positive effects on lipid and glucose metabolism. Based on its favorable biological properties, we investigated whether XN attenuates atherosclerosis in western-type diet-fed apolipoprotein-E-deficient (ApoE(-/-) ) mice. METHODS AND RESULTS: XN supplementation markedly reduced plasma cholesterol concentrations, decreased atherosclerotic lesion area, and attenuated plasma concentrations of the proinflammatory cytokine monocyte chemoattractant protein 1. Decreased hepatic triglyceride and cholesterol content, activation of AMP-activated protein kinase, phosphorylation and inactivation of acetyl-CoA carboxylase, and reduced expression levels of mature sterol regulatory element-binding protein (SREBP)-2 and SREBP-1c mRNA indicate reduced lipogenesis in the liver of XN-fed ApoE(-/-) mice. Concomitant induction of hepatic mRNA expression of carnitine palmitoyltransferase-1a in ApoE(-/-) mice-administered XN suggests increased fatty acid beta-oxidation. Fecal cholesterol concentrations were also markedly increased in XN-fed ApoE(-/-) mice compared with mice fed western-type diet alone. CONCLUSION: The atheroprotective effects of XN might be attributed to combined beneficial effects on plasma cholesterol and monocyte chemoattractant protein 1 concentrations and hepatic lipid metabolism via activation of AMP-activated protein kinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hormone sensitive lipase (HSL) regulates the hydrolysis of acylglycerols and cholesteryl esters (CE) in various cells and organs, including enterocytes of the small intestine. The physiological role of this enzyme in enterocytes, however, stayed elusive. In the present study we generated mice lacking HSL exclusively in the small intestine (HSLiKO) to investigate the impact of HSL deficiency on intestinal lipid metabolism and the consequences on whole body lipid homeostasis. Chow diet-fed HSLiKO mice showed unchanged plasma lipid concentrations. In addition, feeding with high fat/high cholesterol (HF/HC) diet led to unaltered triglyceride but increased plasma cholesterol concentrations and CE accumulation in the small intestine. The same effect was observed after an acute cholesterol load. Gavaging of radioactively labeled cholesterol resulted in increased abundance of radioactivity in plasma, liver and small intestine of HSLiKO mice 4h post-gavaging. However, cholesterol absorption determined by the fecal dual-isotope ratio method revealed no significant difference, suggesting that HSLiKO mice take up the same amount of cholesterol but in an accelerated manner. mRNA expression levels of genes involved in intestinal cholesterol transport and esterification were unchanged but we observed downregulation of HMG-CoA reductase and synthase and consequently less intestinal cholesterol biosynthesis. Taken together our study demonstrates that the lack of intestinal HSL leads to CE accumulation in the small intestine, accelerated cholesterol absorption and decreased cholesterol biosynthesis, indicating that HSL plays an important role in intestinal cholesterol homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intrauterine growth restriction (IUGR) is defined as a condition in which the fetus does not reach its genetically given growth potential, resulting in low birth weight. IUGR is an important cause of perinatal morbidity and mortality, thus contributing substantially to medically indicated preterm birth in order to prevent fetal death. We subjected umbilical cord blood serum samples either belonging to the IUGR group (n = 15) or to the control group (n = 15) to fractionation by affinity chromatography using a bead system with hydrophobic interaction capabilities. So prepared protein mixtures were analyzed by MALDI-TOF mass spectrometric profiling. The six best differentiating ion signals at m/z 8205, m/z 8766, m/z 13 945, m/z 15 129, m/z 15 308, and m/z 16 001 were collectively assigned as IUGR proteome signature. Separation confidence of our IUGR proteome signature reached a sensitivity of 0.87 and a specificity of 0.93. Assignment of ion signals in the mass spectra to specific proteins was substantiated by SDS-PAGE in conjunction with peptide mass fingerprint analysis of cord blood serum proteins. One constituent of this proteome signature, apolipoprotein C-III(0) , a derivative lacking glycosylation, has been found more abundant in the IUGR cord blood serum samples, irrespective of gestational age. Hence, we suggest apolipoprotein C-III(0) as potential key-marker of the here proposed IUGR proteome signature, as it is a very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) member and as such involved in triglyceride metabolism that itself is discussed as being of importance in IUGR pathogenesis. Our results indicate that subtle alterations in protein glycosylation need to be considered for improving our understanding of the pathomechanisms in IUGR.