965 resultados para Interference Rejection
Resumo:
We introduce the study of dynamical quantum noise in Bose-Einstein condensates through numerical simulation of stochastic partial differential equations obtained using phase-space representations. We derive evolution equations for a single trapped condensate in both the positive-P and Wigner representations and perform simulations to compare the predictions of the two methods. The positive-P approach is found to be highly susceptible to the stability problems that have been observed in other strongly nonlinear, weakly damped systems. Using the Wigner representation, we examine the evolution of several quantities of interest using from a variety of choices of initial stare for the condensate and compare results to those for single-mode models. [S1050-2947(98)06612-8].
Resumo:
Although oral piercing has been an uncommon practice in the Western world, the insertion of metal objects into intra-oral and peri-oral pierced sites is growing in popularity. Tongue piercing is one such practice whereby a metal barbell is inserted into the tongue after piercing with a 14-16 gauge needle. Pain, swelling and infection are the most serious consequences associated with this procedure. Other adverse outcomes include mucosal or gingival trauma, chipped or fractured teeth, increased salivary flow, calculus build-up, and interference with speech, mastication and swallowing. This article presents a case report on tongue piercing and highlights the procedure involved. Special attention is given to complications and dental implications associated with such an unusual practice.
Resumo:
Background. Human aortic valve allografts elicit a cellular and humoral immune response. It is not clear whether this is important in promoting valve damage. We investigated the changes in morphology, cell populations, and major histocompatibility complex antigen distribution in the rat aortic valve allograft. Methods. Fresh heart valves from Lewis rats were transplanted into the abdominal aorta of DA rats. Valves from allografted, isografted, and presensitized recipient rats were examined serially with standard morphologic and immunohistochemical techniques. Results. In comparison with isografts, the allografts were infiltrated and thickened by increased numbers of CD4(+) and CD8(+) lymphocytes, macrophages, and fibroblasts. Thickening of the valve wall and leaflet and the density of the cellular infiltrate was particularly evident after presensitization. Endothelial cells were frequently absent in presensitized allografts whereas isografts had intact endothelium. Cellular major histocompatibility complex class I and II antigens in the allograft were substantially increased. A long-term allograft showed dense fibrosis and disruption of the media with scattered persisting donor cells. Conclusions. The changes in these aortic valve allograft experiments are consistent with an allograft immune response and confirm that the response can damage aortic valve allograft tissue. (C) 1998 by The Society of Thoracic Surgeons.
Resumo:
Chemokines are important mediators of the early inflammatory response to infection and modify a wide range of host immune responses. Functional homologs of cellular chemokines have been identified in a number of herpesviruses, suggesting that the subversion of the host chemokine response contributes to the pathogenesis of these viruses. Transcriptional and reverse transcription-PCR analyses demonstrated that the murine cytomegalovirus (MCMV) chemokine homolog, m131, was spliced at the 3' end to the adjacent downstream open reading frame, m129, resulting in a predicted product of 31 kDa, which is significantly larger than most known chemokines. The in vivo impact of m131/129 was investigated by comparing the replication of MCMV mutants having m131/129 deleted (Delta m131/129) with that of wild-type (wt) MCMV. Our studies demonstrate that both wt and Delta m131/129 viruses replicated to equivalent levels during the first 2 to 3 days following in vivo infection. However, histological studies demonstrated that the early inflammatory response elicited by Delta m131/129 was reduced compared with that of wt MCMV. Furthermore, the Delta m131/129 mutants failed to establish a high-titer infection in the salivary glands, These results suggest that m131/129 possesses proinflammatory properties in vivo and is important for the dissemination of MCMV to or infection of the salivary gland. Notably, the Delta m131/129 mutants were cleared more rapidly from the spleen and liver during acute infection compared with wt MCMV. The accelerated clearance of the mutants was dependent on NK cells and cells of the CD4(+) CD8(+) phenotype. These data suggest that m131/129 may also contribute to virus mechanisms of immune system evasion during early infection, possibly through the interference of NK cells and T cells.
Resumo:
Herpesviruses, such as human and murine cytomegalovirus, possess an impressive array of genes believed to assist in virus survival against the host immune response. In this review, we cover the rapidly growing area of cytomegalovirus evasion of cellular immunity, specifically cytotoxic T lymphocytes and natural killer cells. The proposed mechanisms of action of viral proteins involved in blocking peptide presentation to CD8(+) T cells, namely, interference with peptide generation, inhibition of peptide assembly with class I MHC and retention/destabilization of class I MHC complexes, are described. In addition, recent evidence implicating the viral class I MHC-like proteins as inhibitors of natural killer cell-mediated clearance is reviewed, (C) 1998 Academic Press.
Resumo:
S100A8 (also known as CP10 or MRP8) was the first member of the S100 family of calcium-binding proteins shown to be chemotactic for myeloid cells. The gene is expressed together with its dimerization partner S100A9 during myelopoiesis in the fetal liver and in adult bone marrow as well as in mature granulocytes. In this paper we show that S100A8 mRNA is expressed without S100A9 mRNA between 6.5 and 8.5 days postcoitum within fetal cells infiltrating the deciduum in the vicinity of the ectoplacental cone. Targeted disruption of the S100A8 gene caused rapid and synchronous embryo resorption by day 9.5 of development in 100% of homozygous null embryos. Until this point there was no evidence of developmental delay in S100A8(-/-) embryos and decidualization was normal. The results of PCR genotyping around 7.5-8.5 days postcoitum suggest that the null embryos are infiltrated with maternal cells before overt signs of resorption. This work is the first evidence for nonredundant function of a member of the S100 gene family and implies a role in prevention of maternal rejection of the implanting embryo. The S100A8 null provides a new model for studying fetal-maternal interactions during implantation.
Resumo:
Assessment of functional outcome can be used as a measure of the effectiveness of intervention during recovery from a burn injury. This pilot study identifies the factors that are likely to be most important for determining standardized functional outcome measures for children after a burn injury; it highlights the contribution of these factors to variations in children's postburn outcomes. A focus group of 8 parents and a self-report questionnaire administered to 12 children and 13 parents were the means of obtaining information for this exploratory study. Itching was found to be one of the primary impairments that contributed to reduced functional outcome during skin healing after a burn injury. The activities of children who had been burned that were most frequently affected by the injury (as reported by parents) were schoolwork and sports; these were closely followed by sleeping, playing with other children, and unliked activities. Least affected activities were enjoying the family, eating, seeing friends, watching television, and bathing or showering. Eighty-five percent of parents reported at least some level of interference with the listed daily activities. Burn injuries are likely to cause interference with several aspects of a patient's daily life. As a result, families require ongoing support and monitoring. Further research should longitudinally compare the performance of children who have been burned with other children and adolescents.
Resumo:
This paper presents preliminary analysis of the endorsement of the CIDI Psychosis Screening items in a large Australian community sample. CIDI interviews were completed on a representative sample of 10,641 individuals living in private dwellings in Australia. The items examined constructs related to thought control/interference (G1), ideas of reference (G2), and special powers (G3). If endorsed, each item had a follow-up probe (G1A telepathy; G2A things arranged with special meaning; G3A -- group acceptability). The final item (G4) asked if the respondent had been told that they had schizophrenia. This paper presents the frequency of endorsement, and examines the impact of age and sex on these items. Endorsement of the items was G1 =5.86°/,,, G1A=0.70%, G2=4.84%, G2A=l.31%, G3=3.41%, G3A=2.65%, and G4=0.65%. If screen-positives are defined as two or more 'hits', then 0.41% of the sample met this criterion. Younger participants were significantly more likely to be screen-positive. Items G1, G1A, G2 and G2A were endorsed more frequently by younger participants while there were no significant age effects identified in items G3 or G4. There was a nonsignificant trend for females to endorse item G1 more frequently than males (p = 0.07), but there were no signficant gender differences on the other items. Many individuals who were 'screen-negative' for psychosis endorsed CIDI items related to thought controls, ideas of reference and special powers, suggesting that there may be a 'continuum' of experiences in the population. The impact of age on the distribution of these measures suggests either differential biological vulnerability to these experiences and/or differential cultural factors influencing endorsement of the items. The implications of these findings on our understanding of the symptoms of psychosis will be discussed. The survey was funded by the Commonwealth Dept. of Health and Family Services. The Stanley Foundation supported this project.
Resumo:
Natural tumor surveillance capabilities of the host were investigated in six different mouse tumor models where endogenous interleukin (IL)-12. does or does not dictate the efficiency of the innate immune response. Gene-targeted and lymphocyte subset-depleted mice were used to establish the relative importance of natural killer (NK) and NK1.1(+) T (NKT) cells in protection from tumor initiation and metastasis. In the models examined, CD3(-) NK cells were responsible for tumor rejection and protection from metastasis in models where control of major histocompatibility complex class I-deficient tumors was independent of IL-12, A protective role for NKT cells was only observed when tumor rejection required endogenous IL-12 activity. In particular, T cell receptor J alpha 281 gene-targeted mice confirmed a critical function for NKT cells in protection from spontaneous tumors initiated by the chemical carcinogen, methylcholanthrene. This is the first description of an antitumor function for NKT cells in the absence of exogenously administered potent stimulators such as IL-12 or alpha-galactosylceramide.
Resumo:
The study of 'molecular mimicry' or 'genetic piracy', with respect to the utilisation of cellular genes captured and modified during the course of virus evolution, has been an area of increasing research with the expansion in virus genome sequencing. Examples of cellular immunomodulatory genes which have been captured from hosts have been identified in a number of viruses. This review concentrates upon studies of murine cytomegalovirus (MCMV), investigating the functions of viral genes homologous to G protein-coupled receptors, MHC class I and chemokines, The study of recombinant MCMV engineered with specific disruptions of these genes has revealed their significance during virus replication and dissemination within the host, In the case of the latter two classes of genes, evidence suggests they interfere with cellular immune responses, although the detailed mechanisms underlying this interference have yet to be delineated. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Viruses that establish a persistent infection with their host have evolved numerous strategies to evade the immune system. Consequently, they are useful tools to dissect the complex cellular processes that comprise the immune response. Rapid progress has been made in recent years in defining the role of cellular MHC class I molecules in regulating the response of natural killer (NK) cells. Concomitantly, the roles of the MHC class I homologues encoded by human and mouse cytomegaloviruses in evading or subverting NK cell responses has received considerable interest. This review discusses the results from a number of studies that have pursued the biological function of the viral MHC class I homologues. Based on the evidence from these studies, hypotheses for the possible role of these intriguing molecules are presented. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Resumo:
We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of internal states that can be completely decoupled fi om the dissipative interactions (responsible for decoherence) and an external driving laser field. These superpositions, known as dark or trapping states, can he completely stable or can coherently interact with the remaining states. We examine the master equation describing the dissipative evolution of the system and identify conditions for population trapping and also classify processes that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay rates. in particular, we find that the trapping conditions can involve both coherent and dissipative interactions, and depending on the energy level structure of the system, the population can be trapped in a linear superposition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external fields or, in some cases. in one of the excited states of the system. A comprehensive analysis is presented of the different processes that are responsible for population trapping, and we illustrate these ideas with three examples of two coupled systems: single V- and Lambda-type three-level atoms and two nonidentical tao-level atoms, which are known to exhibit dark states. We show that the effect of population trapping does not necessarily require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the vacuum-induced coherent coupling between the systems could be easily observed in Lambda-type atoms. Our analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a maximally entangled state which is completely decoupled from the dissipative interaction.
Resumo:
Dendritic cells (DC) are considered to be the major cell type responsible for induction of primary immune responses. While they have been shown to play a critical role in eliciting allosensitization via the direct pathway, there is evidence that maturational and/or activational heterogeneity between DC in different donor organs may be crucial to allograft outcome. Despite such an important perceived role for DC, no accurate estimates of their number in commonly transplanted organs have been reported. Therefore, leukocytes and DC were visualized and enumerated in cryostat sections of normal mouse (C57BL/10, B10.BR, C3H) liver, heart, kidney and pancreas by immunohistochemistry (CD45 and MHC class II staining, respectively). Total immunopositive cell number and MHC class II+ cell density (C57BL/10 mice only) were estimated using established morphometric techniques - the fractionator and disector principles, respectively. Liver contained considerably more leukocytes (similar to 5-20 x 10(6)) and DC (similar to 1-3 x 10(6)) than the other organs examined (pancreas: similar to 0.6 x 10(6) and similar to 0.35 x 10(6): heart: similar to 0.8 x 10(6) and similar to 0.4 x 10(6); kidney similar to 1.2 x 10(6) and 0.65 x 10(6), respectively). In liver, DC comprised a lower proportion of all leukocytes (similar to 15-25%) than in the other parenchymal organs examined (similar to 40-60%). Comparatively, DC density in C57BL/10 mice was heart > kidney > pancreas much greater than liver (similar to 6.6 x 10(6), 5 x 10(6), 4.5 x 10(6) and 1.1 x 10(6) cells/cm(3), respectively). When compared to previously published data on allograft survival, the results indicate that the absolute number of MHC class II+ DC present in a donor organ is a poor predictor of graft outcome. Survival of solid organ allografts is more closely related to the density of the donor DC network within the graft. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Recent research has begun to provide support for the assumptions that memories are stored as a composite and are accessed in parallel (Tehan & Humphreys, 1998). New predictions derived from these assumptions and from the Chappell and Humphreys (1994) implementation of these assumptions were tested. In three experiments, subjects studied relatively short lists of words. Some of the Lists contained two similar targets (thief and theft) or two dissimilar targets (thief and steal) associated with the same cue (ROBBERY). AS predicted, target similarity affected performance in cued recall but not free association. Contrary to predictions, two spaced presentations of a target did not improve performance in free association. Two additional experiments confirmed and extended this finding. Several alternative explanations for the target similarity effect, which incorporate assumptions about separate representations and sequential search, are rejected. The importance of the finding that, in at least one implicit memory paradigm, repetition does not improve performance is also discussed.
Resumo:
Immune surveillance by cytotoxic lymphocytes against cancer has been postulated for decades, but direct evidence for the role of cytotoxic lymphocytes in protecting against spontaneous malignancy has been lacking. As the rejection of many experimental cancers by cytotoxic T lymphocytes and natural killer cells is dependent on the pore-forming protein perforin (pfp), we examined pfp-deficient mice for increased cancer susceptibility. Here we show that pfp-deficient mice have a high incidence of malignancy in distinct lymphoid cell lineages (T, B, NKT), indicating a specific requirement for pfp in protection against lymphomagenesis. The susceptibility to lymphoma was accentuated by simultaneous lack of expression of the p53 gene, mutations in which also commonly predispose to human malignancies, including lymphoma. In contrast, the incidence and age of onset of sarcoma was unaffected in p53-deficient mice. Pfp-deficient mice were at least 1,000-fold more susceptible to these lymphomas when transplanted, compared with immunocompetent mice in which tumor rejection was controlled by CD8(+) T lymphocytes. This study is the first that implicates direct cytotoxicity by lymphocytes in regulating lymphomagenesis.