876 resultados para Interaction analysis in education
Resumo:
The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.
Resumo:
To estimate whether or not a plant taxon found in the fossil record was locally present may be difficult if only pollen is analyzed. Plant macrofossils, in contrast, provide a clear indication of a taxon's local presence, although in some lake sediments or peats, macrofossils may be rare or degraded. For conifers, the stomata found on pollen slides are derived from needles and thus provide a valuable proxy for local presence and they can be identified to genus level. From previously published studies, a transect across the Alps based on 13 sites is presented. For basal samples in sandy silt above the till with high pollen values of Pinus, for example, we may distinguish pine pollen from distant sources (samples with no stomata), from reworked pollen (samples with stomata present). The first apparent local presence of most conifer genera based on stomata often but not always occurs together with the phase of rapid pollen increase (rational limit). An exception is Larix, with its annual deposition of needles and heavy poorly dispersed pollen, for it often shows the first stomata earlier, at the empirical pollen limit. The decline and potential local extinction of a conifer can sometimes be shown in the stomata record. The decline may have been caused by climatic change, competition, or human impact. In situations where conifers form the timberline, the stomata record may indicate timberline fluctuations. In the discussion of immigration or migration of taxa we advocate the use of the cautious term ``apparent local presence'' to include some uncertainties. Absence of a taxon is impossible to prove.
Resumo:
Orbital blunt trauma is common, and the diagnosis of a fracture should be made by computed tomographic (CT) scan. However, this will expose patients to ionising radiation. Our objective was to identify clinical predictors of orbital fracture, in particular the presence of a black eye, to minimise unnecessary exposure to radiation. A 10-year retrospective study was made of the medical records of all patients with minor head trauma who presented with one or two black eyes to our emergency department between May 2000 and April 2010. Each of the patients had a CT scan, was over 16 years old, and had a Glasgow Coma Score (GCS) of 13-15. The primary outcome was whether the black eye was a valuable predictor of a fracture. Accompanying clinical signs were considered as a secondary outcome. A total of 1676 patients (mean (SD) age 51 (22) years) and minor head trauma with either one or two black eyes were included. In 1144 the CT scan showed a fracture of the maxillofacial skeleton, which gave an incidence of 68.3% in whom a black eye was the obvious symptom. Specificity for facial fractures was particularly high for other clinical signs, such as diminished skin sensation (specificity 96.4%), diplopia or occulomotility disorders (89.3%), fracture steps (99.8%), epistaxis (95.5%), subconjunctival haemorrhage (90.4%), and emphysema (99.6%). Sensitivity for the same signs ranged from 10.8% to 22.2%. The most striking fact was that 68.3% of all patients with a black eye had an underlying fracture. We therefore conclude that a CT scan should be recommended for every patient with minor head injury who presents with a black eye.
Resumo:
BACKGROUND Elevated resting heart rate is known to be detrimental to morbidity and mortality in cardiovascular disease, though its effect in patients with ischemic stroke is unclear. We analyzed the effect of baseline resting heart rate on myocardial infarction (MI) in patients with a recent noncardioembolic cerebral ischemic event participating in PERFORM. METHODS We compared fatal or nonfatal MI using adjusted Cox proportional hazards models for PERFORM patients with baseline heart rate <70 bpm (n=8178) or ≥70 bpm (n=10,802). In addition, heart rate was analyzed as a continuous variable. Other cerebrovascular and cardiovascular outcomes were also explored. RESULTS Heart rate ≥70 bpm was associated with increased relative risk for fatal or nonfatal MI (HR 1.32, 95% CI 1.03-1.69, P=0.029). For every 5-bpm increase in heart rate, there was an increase in relative risk for fatal and nonfatal MI (11.3%, P=0.0002). Heart rate ≥70 bpm was also associated with increased relative risk for a composite of fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (excluding hemorrhagic death) (P<0001); vascular death (P<0001); all-cause mortality (P<0001); and fatal or nonfatal stroke (P=0.04). For every 5-bpm increase in heart rate, there were increases in relative risk for fatal or nonfatal ischemic stroke, fatal or nonfatal MI, or other vascular death (4.7%, P<0.0001), vascular death (11.0%, P<0.0001), all-cause mortality (8.0%, P<0.0001), and fatal and nonfatal stroke (2.4%, P=0.057). CONCLUSION Elevated heart rate ≥70 bpm places patients with a noncardioembolic cerebral ischemic event at increased risk for MI.
Resumo:
Systematic reviews of well-designed trials constitute a high level of scientific evidence and are important for medical decision making. Meta-analysis facilitates integration of the evidence using a transparent and systematic approach, leading to a broader interpretation of treatment effectiveness and safety than can be attained from individual studies. Traditional meta-analyses are limited to comparing just 2 interventions concurrently and cannot combine evidence concerning multiple treatments. A relatively recent extension of the traditional meta-analytical approach is network meta-analysis, which allows, under certain assumptions, the quantitative synthesis of all evidence under a unified framework and across a network of all eligible trials. Network meta-analysis combines evidence from direct and indirect information via common comparators; interventions can therefore be ranked in terms of the analyzed outcome. In this article, the network meta-analysis approach is introduced in a nontechnical manner using a worked example on the treatment effectiveness of conventional and self-ligating appliances.
Resumo:
Pre-combined SLR-GNSS solutions are studied and the impact of different types of datum definition on the estimated parameters is assessed. It is found that the origin is realized best by using only the SLR core network for defining the geodetic datum and the inclusion of the GNSS core sites degrades the origin. The orientation, however, requires a dense and continuous network, thus, the inclusion of the GNSS core network is absolutely needed.
Optimized method for black carbon analysis in ice and snow using the Single Particle Soot Photometer
Resumo:
BACKGROUND Multiple breath washout (MBW) derived Scond is an established index of ventilation inhomogeneity. Time-consuming post hoc calculations of the expirogram's slope of alveolar phase III (SIII) and the lack of available software hampered widespread application of Scond. METHODS Seventy-two school-aged children (45 with cystic fibrosis; CF) performed 3 nitrogen MBW. We tested a new automated algorithm for Scond analysis (Scondauto ) which comprised breath selection for SIII detection, calculation and reporting of test quality. We compared Scondauto to (i) standard Scond analysis (Scondmanual ) with manual breath selection and to (ii) pragmatic Scond analysis including all breaths (Scondall ). Primary outcomes were success rate and agreement between different Scond protocols, and Scond fitting quality (linear regression R(2) ). RESULTS Average Scondauto (0.06 for CF and 0.01 for controls) was not different from Scondmanual (0.06 for CF and 0.01 for controls) and showed comparable fitting quality (R(2) 0.53 for CF and 0.13 for controls vs. R(2) 0.54 for CF and 0.13 for controls). Scondall was similar in CF and controls but with inferior fitting quality compared to Scondauto and Scondmanual . CONCLUSIONS Automated Scond calculation is feasible and produces robust results comparable to the standard manual way of Scond calculation. This algorithm provides a valid, fast and objective tool for regular use, even in children. Pediatr Pulmonol. © 2014 Wiley Periodicals, Inc.
Resumo:
OBJECTIVES To compare biomechanical rupture risk parameters of asymptomatic, symptomatic and ruptured abdominal aortic aneurysms (AAA) using finite element analysis (FEA). STUDY DESIGN Retrospective biomechanical single center analysis of asymptomatic, symptomatic, and ruptured AAAs. Comparison of biomechanical parameters from FEA. MATERIALS AND METHODS From 2011 to 2013 computed tomography angiography (CTA) data from 30 asymptomatic, 15 symptomatic, and 15 ruptured AAAs were collected consecutively. FEA was performed according to the successive steps of AAA vessel reconstruction, segmentation and finite element computation. Biomechanical parameters Peak Wall Rupture Risk Index (PWRI), Peak Wall Stress (PWS), and Rupture Risk Equivalent Diameter (RRED) were compared among the three subgroups. RESULTS PWRI differentiated between asymptomatic and symptomatic AAAs (p < .0004) better than PWS (p < .1453). PWRI-dependent RRED was higher in the symptomatic subgroup compared with the asymptomatic subgroup (p < .0004). Maximum AAA external diameters were comparable between the two groups (p < .1355). Ruptured AAAs showed the highest values for external diameter, total intraluminal thrombus volume, PWS, RRED, and PWRI compared with asymptomatic and symptomatic AAAs. In contrast with symptomatic and ruptured AAAs, none of the asymptomatic patients had a PWRI value >1.0. This threshold value might identify patients at imminent risk of rupture. CONCLUSIONS From different FEA derived parameters, PWRI distinguishes most precisely between asymptomatic and symptomatic AAAs. If elevated, this value may represent a negative prognostic factor for asymptomatic AAAs.
Resumo:
Climate adaptation policies increasingly incorporate sustainability principles into their design and implementation. Since successful adaptation by means of adaptive capacity is recognized as being dependent upon progress toward sustainable development, policy design is increasingly characterized by the inclusion of state and non-state actors (horizontal actor integration), cross-sectoral collaboration, and inter-generational planning perspectives. Comparing four case studies in Swiss mountain regions, three located in the Upper Rhone region and one case from western Switzerland, we investigate how sustainability is put into practice. We argue that collaboration networks and sustainability perceptions matter when assessing the implementation of sustainability in local climate change adaptation. In other words, we suggest that adaptation is successful where sustainability perceptions translate into cross-sectoral integration and collaboration on the ground. Data about perceptions and network relations are assessed through surveys and treated via cluster and social network analysis.