959 resultados para Integrable equations in Physics
Resumo:
Pós-graduação em Física - IFT
Resumo:
In this work we present results of the first Townsend coefficient (alpha) in pure isobutane by measuring the current growth as a function of the electric field strength in a pulsed irradiation regime. A Resistive Plate Chamber (RPC)-like configuration was used. To validate this method, as well as to crosscheck the experimental apparatus, measurements of the alpha parameter were firstly carried out with pure nitrogen and the results compared to the accurate data available in the literature. The data obtained with isobutane in a field range from 145 Td up to 200 Td were well-matched to those calculated with Magboltz versions 2.7.1 and 2.8.6. The experimental consistency of these results with other published data in the range of 550-1300 Td was very good, as demonstrated by the use of the Korff parameterization. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The present paper presents a historical study on the acceptance of Newton's corpuscular theory of light in the early eighteenth century. Isaac Newton first published his famous book Opticks in 1704. After its publication, it became quite popular and was an almost mandatory presence in cultural life of Enlightenment societies. However, Newton's optics did not become popular only via his own words and hands, but also via public lectures and short books with scientific contents devoted to general public (including women) that emerged in the period as a sort of entertainment business. Lectures and writers stressed the inductivist approach to the study of nature and presented Newton's ideas about optics as they were consensual among natural philosophers in the period. The historical case study presented in this paper illustrates relevant aspects of nature of science, which can be explored by students of physics on undergraduate level or in physics teacher training programs.
Resumo:
This paper is concerned with the existence of multi-bump solutions to a class of quasilinear Schrodinger equations in R. The proof relies on variational methods and combines some arguments given by del Pino and Felmer, Ding and Tanaka, and Sere.
Resumo:
Following a worldwide trend, the Initial Teacher Education (ITE) Programmes in Brazil are recently searching for ways of integrating practice into curriculum. It raises question about what practice must be integrated and how. Notably, university-based courses are disconnected from school and have low commitment with school issues (Zeichner, 2009).The student teacher induction into school daily life is not an easy task, mainly when the practitioners are transforming physics classroom practice toward an active learning. Drawing on cultural-historical framework (Wolff-Michael Roth & Lee, 2007; Vygotsky, 1978) this study addresses the articulation between Practicum in Physics Classes and the Hands-on Experiments (HoE) used throughout the Practicum. Although in a different level, both Practicum and HoE are linked with an idea of practice. Particularly, this study focuses on how HoE might foster student teachers' autonomy and agency in the Practicum. Data was gathered in the course Practice of Physics Teaching at University of São Paulo/Brazil in 2010; in a cohort of 60 student teachers doing a year-long Practicum in urban school in São Paulo city. Data was analysed using qualitative research methods (Roth, 2005), based on 14 interviews and video records of the student teacher preparing the HoE for Practicum we will present in general lines the role of HoE for student teacher autonomy.
Resumo:
The thesis consists of three independent parts. Part I: Polynomial amoebas We study the amoeba of a polynomial, as de ned by Gelfand, Kapranov and Zelevinsky. A central role in the treatment is played by a certain convex function which is linear in each complement component of the amoeba, which we call the Ronkin function. This function is used in two di erent ways. First, we use it to construct a polyhedral complex, which we call a spine, approximating the amoeba. Second, the Monge-Ampere measure of the Ronkin function has interesting properties which we explore. This measure can be used to derive an upper bound on the area of an amoeba in two dimensions. We also obtain results on the number of complement components of an amoeba, and consider possible extensions of the theory to varieties of codimension higher than 1. Part II: Differential equations in the complex plane We consider polynomials in one complex variable arising as eigenfunctions of certain differential operators, and obtain results on the distribution of their zeros. We show that in the limit when the degree of the polynomial approaches innity, its zeros are distributed according to a certain probability measure. This measure has its support on the union of nitely many curve segments, and can be characterized by a simple condition on its Cauchy transform. Part III: Radon transforms and tomography This part is concerned with different weighted Radon transforms in two dimensions, in particular the problem of inverting such transforms. We obtain stability results of this inverse problem for rather general classes of weights, including weights of attenuation type with data acquisition limited to a 180 degrees range of angles. We also derive an inversion formula for the exponential Radon transform, with the same restriction on the angle.
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Resumo:
This thesis is the result of my experience as a PhD student taking part in the Joint Doctoral Programme at the University of York and the University of Bologna. In my thesis I deal with topics that are of particular interest in Italy and in Great Britain. Chapter 2 focuses on the empirical test of the existence of the relationship between technological profiles and market structure claimed by Sutton’s theory (1991, 1998) in the specific economic framework of hospital care services provided by the Italian National Health Service (NHS). In order to test the empirical predictions by Sutton, we identify the relevant markets for hospital care services in Italy in terms of both product and geographic dimensions. In particular, the Elzinga and Hogarty (1978) approach has been applied to data on patients’ flows across Italian Provinces in order to derive the geographic dimension of each market. Our results provide evidence in favour of the empirical predictions of Sutton. Chapter 3 deals with the patient mobility in the Italian NHS. To analyse the determinants of patient mobility across Local Health Authorities, we estimate gravity equations in multiplicative form using a Poisson pseudo maximum likelihood method, as proposed by Santos-Silva and Tenreyro (2006). In particular, we focus on the scale effect played by the size of the pool of enrolees. In most of the cases our results are consistent with the predictions of the gravity model. Chapter 4 considers the effects of contractual and working conditions on selfassessed health and psychological well-being (derived from the General Health Questionnaire) using the British Household Panel Survey (BHPS). We consider two branches of the literature. One suggests that “atypical” contractual conditions have a significant impact on health while the other suggests that health is damaged by adverse working conditions. The main objective of our paper is to combine the two branches of the literature to assess the distinct effects of contractual and working conditions on health. The results suggest that both sets of conditions have some influence on health and psychological well-being of employees.
Verzweigung periodischer Lösungen bei rein nichtlinearen Differentialgleichungssystemen in der Ebene
Resumo:
Zusammenfassung:In dieser Arbeit werden die Abzweigung stationärer Punkte und periodischer Lösungen von isolierten stationären Punkten rein nichtlinearer Differentialgleichungen in der reellenEbene betrachtet.Das erste Kapitel enthält einige technische Hilfsmittel, während im zweiten ausführlich das Verhalten von Differentialgleichungen in der Ebene mit zwei homogenen Polynomen gleichen Grades als rechter Seite diskutiert wird.Im dritten Kapitel beginnt der Hauptteil der Arbeit. Hier wird eine Verallgemeinerung des Hopf'schen Verzweigungssatzes bewiesen, der den klassischen Satz als Spezialfall enthält.Im vierten Kapitel untersuchen wir die Abzweigung stationärer Punkte und im letzten Kapitel die Abzweigung periodischer Lösungen unter Störungen, deren Ordnung echt kleiner ist, als die erste nichtverschwindende Näherung der ungestörten Gleichung.Alle Voraussetzungen in dieser Arbeit sind leicht nachzurechnen und es werden zahlreiche Beispiele ausführlich diskutiert.
Resumo:
The purpose of this dissertation is to prove that the Dirichlet problem in a bounded domain is uniquely solvable for elliptic equations in divergence form. The proof can be achieved by Hilbert space methods based on generalized or weak solutions. Existence and uniqueness of a generalized solution for the Dirichlet problem follow from the Fredholm alternative and weak maximum principle.
Resumo:
Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.
Resumo:
Die Kernmagnetresonanz (NMR) ist eine vielseitige Technik, die auf spin-tragende Kerne angewiesen ist. Seit ihrer Entdeckung ist die Kernmagnetresonanz zu einem unverzichtbaren Werkzeug in unzähligen Anwendungen der Physik, Chemie, Biologie und Medizin geworden. Das größte Problem der NMR ist ihre geringe Sensitivtät auf Grund der sehr kleinen Energieaufspaltung bei Raumtemperatur. Für Protonenspins, die das größte magnetogyrische Verhältnis besitzen, ist der Polarisationsgrad selbst in den größten verfügbaren Magnetfeldern (24 T) nur ~7*10^(-5).rnDurch die geringe inhärente Polarisation ist folglich eine theoretische Sensitivitätssteigerung von mehr als 10^4 möglich. rnIn dieser Arbeit wurden verschiedene technische Aspekte und unterschiedliche Polarisationsagenzien für Dynamic Nuclear Polarization (DNP) untersucht.rnDie technische Entwicklung des mobilen Aufbaus umfasst die Verwendung eines neuen Halbach Magneten, die Konstruktion neuer Probenköpfe und den automatisierten Ablauf der Experimente mittels eines LabVIEW basierten Programms. Desweiteren wurden zwei neue Polarisationsagenzien mit besonderen Merkmalen für den Overhauser und den Tieftemperatur DNP getestet. Zusätzlich konnte die Durchführbarkeit von NMR Experimenten an Heterokernen (19F und 13C) im mobilen Aufbau bei 0,35 T gezeigt werden. Diese Ergebnisse zeigen die Möglichkeiten der Polarisationstechnik DNP auf, wenn Heterokerne mit einem kleinen magnetogyrischen Verhältnis polarisiert werden müssen.rnDie Sensitivitätssteigerung sollte viele neue Anwendungen, speziell in der Medizin, ermöglichen.
Resumo:
The Thermodynamic Bethe Ansatz analysis is carried out for the extended-CP^N class of integrable 2-dimensional Non-Linear Sigma Models related to the low energy limit of the AdS_4xCP^3 type IIA superstring theory. The principal aim of this program is to obtain further non-perturbative consistency check to the S-matrix proposed to describe the scattering processes between the fundamental excitations of the theory by analyzing the structure of the Renormalization Group flow. As a noteworthy byproduct we eventually obtain a novel class of TBA models which fits in the known classification but with several important differences. The TBA framework allows the evaluation of some exact quantities related to the conformal UV limit of the model: effective central charge, conformal dimension of the perturbing operator and field content of the underlying CFT. The knowledge of this physical quantities has led to the possibility of conjecturing a perturbed CFT realization of the integrable models in terms of coset Kac-Moody CFT. The set of numerical tools and programs developed ad hoc to solve the problem at hand is also discussed in some detail with references to the code.
Resumo:
After briefly discuss the natural homogeneous Lie group structure induced by Kolmogorov equations in chapter one, we define an intrinsic version of Taylor polynomials and Holder spaces in chapter two. We also compare our definition with others yet known in literature. In chapter three we prove an analogue of Taylor formula, that is an estimate of the remainder in terms of the homogeneous metric.
Resumo:
Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.