983 resultados para Industrial noise
Resumo:
[ES] El conjunto industrial achelense de Puyo (Lannemezan, Hautes-Pyrénées), descubierto por G. Laplace en 1954 en posición estratigráfica rissiense, está compuesto por 360 ejemplares líticos tallados en cuarcita local. Este efectivo industrial se reparte entre: 218 piezas retocadas (en las que se han definido 226 tipos primarios), 136 lascas y 6 núcleos. Tecnológicamente, la mayor parte de las industrias parecen estar en relación con un debitado sobre yunque; técnica de talla que ha procurado unas lascas con unos atributos muy específicos, en las que, en varios casos, son más que evidentes sus analogías morfológicas con los "hachereaux". En este sentido, la elevada presencia de "hachereaux" bien formateados y de otras piezas hacheroides más elementales, menos elaboradas, así como de varias formas particulares de utillaje macrolítico (ojivas, puntas), nos ha llevado a plantear una propuesta de definición y clasificación analítica particular para estos temas. La contribución global de estas piezas macrolíticas es superior a la de los útiles convencionales o más habituales. Por último, en lo que concierne a la valoración tipológica, este original complejo achelense está definido esencialmente, además de por los más numerosos tipos hacheroides, por una casi similar presencia de denticulados y una importante contribución de puntas carenoides. Más complementariamente, deben estimarse las aportaciones de ojivas y raederas, y son francamente minoritarios los restantes grupos tipológicos considerados (de cantos tallados, truncaduras, puntas planas, abruptos, raspadores, "becs", fragmentos de piezas bifaciales indeterminadas y "écaillés").
Resumo:
Abundance indices derived from fishery-independent surveys typically exhibit much higher interannual variability than is consistent with the within-survey variance or the life history of a species. This extra variability is essentially observation noise (i.e. measurement error); it probably reflects environmentally driven factors that affect catchability over time. Unfortunately, high observation noise reduces the ability to detect important changes in the underlying population abundance. In our study, a noise-reduction technique for uncorrelated observation noise that is based on autoregressive integrated moving average (ARIMA) time series modeling is investigated. The approach is applied to 18 time series of finfish abundance, which were derived from trawl survey data from the U.S. northeast continental shelf. Although the a priori assumption of a random-walk-plus-uncorrelated-noise model generally yielded a smoothed result that is pleasing to the eye, we recommend that the most appropriate ARIMA model be identified for the observed time series if the smoothed time series will be used for further analysis of the population dynamics of a species.