900 resultados para Indução artificial
Resumo:
This dissertation dea1s with the active magnetic suspension controI system of an induction bearingIess motor configured with split windings. It analyses a dynamic modeI for the radial magnetic forces actuating on the rotor. From that, it proposes a new approach for the composition of the currents imposed to the machine's stator. It shows the tests accomplished with a prototype, proving the usefulness of the new actuating structure for the radial positioning controI. Finnaly, it points out the importance of adapting this structure to well-known rotational controI techniques, continuing this kind of equipment research, which is carried out at Federal University of Rio Grande do Norte since 2000
Resumo:
The present work is based on the applied bilinear predictive control applied to an induction motor. As in particular case of the technique based on predictive control in nonlinem systems, these have desperted great interest, a time that present the advantage of being simpler than the non linear in general and most representative one than the linear one. One of the methods, adopted here, uses the linear model "quasi linear for step of time" based in Generalized Predictive Control. The modeling of the induction motor is made by the Vectorial control with orientation given for the indirect rotor. The system is formed by an induction motor of 3 cv with rotor in squirregate, set in motion for a group of benches of tests developed for this work, presented resulted for a variation of +5% in the value of set-point and for a variation of +10% and -10% in the value of the applied nominal load to the motor. The results prove a good efficiency of the predictive bilinear controllers, then compared with the linear cases
Resumo:
Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification
Resumo:
The Electrical Submersible Pump (ESP) has been one of the most appropriate solutions for lifting method in onshore and offshore applications. The typical features for this application are adverse temperature, viscosity fluids and gas environments. The difficulties in equipments maintenance and setup contributing to increasing costs of oil production in deep water, therefore, the optimization through automation can be a excellent approach for decrease costs and failures in subsurface equipment. This work describe a computer simulation related with the artificial lifting method ESP. This tool support the dynamic behavior of ESP approach, considering the source and electric energy transmission model for the motor, the electric motor model (including the thermal calculation), flow tubbing simulation, centrifugal pump behavior simulation with liquid nature effects and reservoir requirements. In addition, there are tri-dimensional animation for each ESP subsytem (transformer, motor, pump, seal, gas separator, command unit). This computer simulation propose a improvement for monitoring oil wells for maximization of well production. Currenty, the proprietaries simulators are based on specific equipments manufactures. Therefore, it is not possible simulation equipments of another manufactures. In the propose approach there are support for diverse kinds of manufactures equipments
Resumo:
This work describes the experimental implementation of a shunt active power filter applied to a three-phase induction generator. The control strategy of active filter turned to the excitation control of the machine and to decrease the harmonics in the generator output current. Involved the implementation of a digital PWM switching, and was made a comparison of two techniques for obtaining the reference currents. The first technique is based on the synchronous dq reference method and the second on the theory of instantaneous power. The comparison is performed via simulation and experimental results. To obtain the experimental results, was mounted a bench trial and the control and communications needed were implemented using DSP - MS320F2812. The simulation results and experimental data proved the efficiency of the filter to apply, highlighting the technique of instantaneous power
Resumo:
The present work describes the use of a mathematical tool to solve problems arising from control theory, including the identification, analysis of the phase portrait and stability, as well as the temporal evolution of the plant s current induction motor. The system identification is an area of mathematical modeling that has as its objective the study of techniques which can determine a dynamic model in representing a real system. The tool used in the identification and analysis of nonlinear dynamical system is the Radial Basis Function (RBF). The process or plant that is used has a mathematical model unknown, but belongs to a particular class that contains an internal dynamics that can be modeled.Will be presented as contributions to the analysis of asymptotic stability of the RBF. The identification using radial basis function is demonstrated through computer simulations from a real data set obtained from the plant
Resumo:
This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing
Resumo:
This work presents a diagnosis faults system (rotor, stator, and contamination) of three-phase induction motor through equivalent circuit parameters and using techniques patterns recognition. The technology fault diagnostics in engines are evolving and becoming increasingly important in the field of electrical machinery. The neural networks have the ability to classify non-linear relationships between signals through the patterns identification of signals related. It is carried out induction motor´s simulations through the program Matlab R & Simulink R , and produced some faults from modifications in the equivalent circuit parameters. A system is implemented with multiples classifying neural network two neural networks to receive these results and, after well-trained, to accomplish the identification of fault´s pattern
Resumo:
Induction motors are one of the most important equipment of modern industry. However, in many situations, are subject to inadequate conditions as high temperatures and pressures, load variations and constant vibrations, for example. Such conditions, leaving them more susceptible to failures, either external or internal in nature, unwanted in the industrial process. In this context, predictive maintenance plays an important role, where the detection and diagnosis of faults in a timely manner enables the increase of time of the engine and the possibiity of reducing costs, caused mainly by stopping the production and corrective maintenance the motor itself. In this juncture, this work proposes the design of a system that is able to detect and diagnose faults in induction motors, from the collection of electrical line voltage and current, and also the measurement of engine speed. This information will use as input to a fuzzy inference system based on rules that find and classify a failure from the variation of thess quantities
Resumo:
The method of artificial lift of progressing cavity pump is very efficient in the production of oils with high viscosity and oils that carry a great amount of sand. This characteristic converted this lift method into the second most useful one in oil fields production. As it grows the number of its applications it also increases the necessity to dominate its work in a way to define it the best operational set point. To contribute to the knowledge of the operational method of artificial lift of progressing cavity pump, this work intends to develop a computational simulator for oil wells equipped with an artificial lift system. The computational simulator of the system will be able to represent its dynamic behavior when submitted to the various operational conditions. The system was divided into five subsystems: induction motor, multiphase flows into production tubing, rod string, progressing cavity pump and annular tubing-casing. The modeling and simulation of each subsystem permitted to evaluate the dynamic characteristics that defined the criteria connections. With the connections of the subsystems it was possible to obtain the dynamic characteristics of the most important arrays belonging to the system, such as: pressure discharge, pressure intake, pumping rate, rod string rotation and torque applied to polish string. The shown results added to a friendly graphical interface converted the PCP simulator in a great potential tool with a didactic characteristic in serving the technical capability for the system operators and also permitting the production engineering to achieve a more detail analysis of the dynamic operational oil wells equipped with the progressing cavity pump
Resumo:
The using of supervision systems has become more and more essential in accessing, managing and obtaining data of industrial processes, because of constant and frequent developments in industrial automation. These supervisory systems (SCADA) have been widely used in many industrial environments to store process data and to control the processes in accordance with some adopted strategy. The SCADA s control hardware is the set of equipments that execute this work. The SCADA s supervision software accesses process data through the control hardware and shows them to the users. Currently, many industrial systems adopt supervision softwares developed by the same manufacturer of the control hardware. Usually, these softwares cannot be used with other equipments made by distinct manufacturers. This work proposes an approach for developing supervisory systems able to access process information through different control hardwares. An architecture for supervisory systems is first defined, in order to guarantee efficiency in communication and data exchange. Then, the architecture is applied in a supervisory system to monitor oil wells that use distinct control hardwares. The implementation was modeled and verified by using the formal method of the Petri networks. Finally, experimental results are presented to demonstrate the applicability of the proposed solution
Resumo:
Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections
Resumo:
Electrical Motors transform electrical energy into mechanic energy in a relatively easy way. In some specific applications, there is a need for electrical motors to function with noncontaminated fluids, in high speed systems, under inhospitable conditions, or yet, in local of difficult access and considerable depth. In these cases, the motors with mechanical bearings are not adequate as their wear give rise to maintenance. A possible solution for these problems stems from two different alternatives: motors with magnetic bearings, that increase the length of the machine (not convenient), and the bearingless motors that aggregate compactness. Induction motors have been used more and more in research, as they confer more robustness to bearingless motors compared to other types of machines building with others motors. The research that has already been carried out with bearingless induction motors utilized prototypes that had their structures of stator/rotor modified, that differ most of the times from the conventional induction motors. The goal of this work is to study the viability of the use of conventional induction Motors for the beringless motors applications, pointing out the types of Motors of this category that can be more useful. The study uses the Finite Elements Method (FEM). As a means of validation, a conventional induction motor with squirrel-cage rotor was successfully used for the beringless motor application of the divided winding type, confirming the proposed thesis. The controlling system was implemented in a Digital Signal Processor (DSP)
Resumo:
This work proposes a computer simulator for sucker rod pumped vertical wells. The simulator is able to represent the dynamic behavior of the systems and the computation of several important parameters, allowing the easy visualization of several pertinent phenomena. The use of the simulator allows the execution of several tests at lower costs and shorter times, than real wells experiments. The simulation uses a model based on the dynamic behavior of the rod string. This dynamic model is represented by a second order partial differencial equation. Through this model, several common field situations can be verified. Moreover, the simulation includes 3D animations, facilitating the physical understanding of the process, due to a better visual interpretation of the phenomena. Another important characteristic is the emulation of the main sensors used in sucker rod pumping automation. The emulation of the sensors is implemented through a microcontrolled interface between the simulator and the industrial controllers. By means of this interface, the controllers interpret the simulator as a real well. A "fault module" was included in the simulator. This module incorporates the six more important faults found in sucker rod pumping. Therefore, the analysis and verification of these problems through the simulator, allows the user to identify such situations that otherwise could be observed only in the field. The simulation of these faults receives a different treatment due to the different boundary conditions imposed to the numeric solution of the problem. Possible applications of the simulator are: the design and analysis of wells, training of technicians and engineers, execution of tests in controllers and supervisory systems, and validation of control algorithms
Resumo:
This paper describes the study, computer simulation and feasibility of implementation of vector control speed of an induction motor using for this purpose the Extended Kalman Filter as an estimator of rotor flux. The motivation for such work is the use of a control system that requires no sensors on the machine shaft, thus providing a considerable cost reduction of drives and their maintenance, increased reliability, robustness and noise immunity as compared to control systems with conventional sensors