889 resultados para In-control
Resumo:
Our previous studies have shown that stimulation of the anterior ventral third ventricular region increases atrial natriuretic peptide (ANP) release, whereas lesions of this structure, the median eminence, or removal of the neural lobe of the pituitary block ANP release induced by blood volume expansion (BVE). These results indicate that participation of the central nervous system is crucial in these responses, possibly through mediation by neurohypophysial hormones. In the present research we investigated the possible role of oxytocin, one of the two principal neurohypophysial hormones, in the mediation of ANP release. Oxytocin (1-10 nmol) injected i.p. caused significant, dose-dependent increases in urinary osmolality, natriuresis, and kaliuresis. A delayed antidiuretic effect was also observed. Plasma ANP concentrations increased nearly 4-fold (P < 0.01) 20 min after i.p. oxytocin (10 nmol), but there was no change in plasma ANP values in control rats. When oxytocin (1 or 10 nmol) was injected i.v., it also induced a dose-related increase in plasma ANP at 5 min (P < 0.001). BVE by intra-atrial injection of isotonic saline induced a rapid (5 min postinjection) increase in plasma oxytocin and ANP concentrations and a concomitant decrease in plasma arginine vasopressin concentration. Results were similar with hypertonic volume expansion, except that this induced a transient (5 min) increase in plasma arginine vasopressin. The findings are consistent with the hypothesis that baroreceptor activation of the central nervous system by BVE stimulates the release of oxytocin from the neurohypophysis. This oxytocin then circulates to the right atrium to induce release of ANP, which circulates to the kidney and induces natriuresis and diuresis, which restore body fluid volume to normal levels.
Resumo:
Multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMK) phosphorylates proteins pivotally involved in diverse neuronal processes and thereby coordinates cellular responses to external stimuli that regulate intracellular Ca2+ [Hanson, P. I. & Schulman, H. (1992) Annu. Rev. Biochem. 61, 559-664]. Despite extensive study, the impact of this enzyme on control of the excitability of neuron populations in the mammalian nervous system in situ is unknown. To address this question, we studied transgenic mice carrying a null mutation (-/-) for the alpha subunit of CaMK. In contrast to wild-type littermates, null mutants exhibit profound hyperexcitability, evident in epileptic seizures involving limbic structures including the hippocampus. No evidence of increased excitability was detected in mice carrying null mutations of the gamma isoform of protein kinase C, underscoring the specificity of the effect of CaMK. CaMK plays a powerful and previously underappreciated role in control of neuronal excitability in the mammalian nervous system. These insights have important implications for analyses of mechanisms of epilepsy and, perhaps, learning and memory.
Resumo:
We sought to examine mechanisms responsible for increased vasoconstriction that occurs during development of nitroglycerin tolerance. Rabbits were treated for 3 days with nitroglycerin patches (0.4 mg/hr), and their aortic segments were studied in organ chambers. This treatment resulted in attenuated in vitro relaxations to nitroglycerin and increased contractile sensitivity to angiotensin II, serotonin, phenylephrine, KCl, and a direct activator of protein kinase C, the phorbol ester phorbol 12,13-dibutyrate. The protein kinase C antagonists calphostin C (100 nM) and staurosporine (10 nM) corrected the hypersensitivity to constrictors in tolerant vessels, yet had minimal effects on constrictions in control vessels. Paradoxically, constrictions caused by endothelin 1 were decreased in nitrate-tolerant vessels. Immunocytochemical analysis revealed intense endothelin 1-like and big endothelin 1-like immunoreactivity in the media of nitroglycerin-tolerant but not of control aortas. The enhanced vasoconstriction to angiotensin II, serotonin, KCl, and phenylephrine could be mimicked in normal vessels by addition of subthreshold concentrations of endothelin 1, and this effect was prevented by calphostin C. We propose that increased autocrine production of endothelin 1 in nitrate tolerance sensitizes vascular smooth muscle to a variety of vasoconstrictors through a protein kinase C-mediated mechanism.
Resumo:
Occupational exposure to benzene is known to cause leukemia, but the mechanism remains unclear. Unlike most other carcinogens, benzene and its metabolites are weakly or nonmutagenic in most simple gene mutation assays. Benzene and its metabolites do, however, produce chromosomal damage in a variety of systems. Here, we have used the glycophorin A (GPA) gene loss mutation assay to evaluate the nature of DNA damage produced by benzene in 24 workers heavily exposed to benzene and 23 matched control individuals in Shanghai, China. The GPA assay identifies stem cell or precursor erythroid cell mutations expressed in peripheral erythrocytes of MN-heterozygous subjects, distinguishing the NN and N phi mutant variants. A significant increase in the NN GPA variant cell frequency (Vf) was found in benzene-exposed workers as compared with unexposed control individuals (mean +/- SEM, 13.9 +/- 1.7 per million cells vs. 7.4 +/- 1.1 per million cells in control individuals; P = 0.0002). In contrast, no significant difference existed between the two groups for the N phi Vf (9.1 +/- 0.9 vs. 8.8 +/- 1.8 per million cells; P = 0.21). Further, lifetime cumulative occupational exposure to benzene was associated with the NN Vf (P = 0.005) but not with the N phi Vf (P = 0.31), suggesting that NN mutations occur in longer-lived bone marrow stem cells. NN variants result from loss of the GPA M allele and duplication of the N allele, presumably through recombination mechanisms, whereas NO variants arise from gene inactivation, presumably due to point mutations and deletions. Thus, these results suggest that benzene produces gene-duplicating mutations but does not produce gene-inactivating mutations at the GPA locus in bone marrow cells of humans exposed to high benzene levels. This finding is consistent with data on the genetic toxicology of benzene and its metabolites and adds further weight to the hypothesis that chromosome damage and mitotic recombination are important in benzene-induced leukemia.
Resumo:
Purpose. To evaluate the preventive effect of tauroursodeoxycholic acid (TUDCA) on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). Methods. P23H line-3 rats were injected with TUDCA once a week from postnatal day (P)21 to P120, in parallel with vehicle-administered controls. At P120, functional activity of the retina was evaluated by electroretinographic (ERG) recording. The effects of TUDCA on the number, morphology, integrity, and synaptic connectivity of retinal cells were characterized by immunofluorescence confocal microscopy. Results. The amplitude of ERG a- and b-waves was significantly higher in TUDCA-treated animals under both scotopic and photopic conditions than in control animals. In the central area of the retina, TUDCA-treated P23H rats showed threefold more photoreceptors than control animals. The number of TUNEL-positive cells was significantly smaller in TUDCA-treated rats, in which photoreceptor morphology was preserved. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in TUDCA-treated P23H rats. Furthermore, in TUDCA-treated rat retinas, the number of both rod bipolar and horizontal cell bodies, as well as the density of their synaptic terminals in the outer plexiform layer, was greater than in control rats. Conclusions. TUDCA treatment was capable of preserving cone and rod structure and function, together with their contacts with their postsynaptic neurons. The neuroprotective effects of TUDCA make this compound potentially useful for delaying retinal degeneration in RP.
Resumo:
Proinsulin has been characterized as a neuroprotective molecule. In this work we assess the therapeutic potential of proinsulin on photoreceptor degeneration, synaptic connectivity, and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). P23H homozygous rats received an intramuscular injection of an adeno-associated viral vector serotype 1 (AAV1) expressing human proinsulin (hPi+) or AAV1-null vector (hPi−) at P20. Levels of hPi in serum were determined by enzyme-linked immunosorbent assay (ELISA), and visual function was evaluated by electroretinographic (ERG) recording at P30, P60, P90, and P120. Preservation of retinal structure was assessed by immunohistochemistry at P120. Human proinsulin was detected in serum from rats injected with hPi+ at all times tested, with average hPi levels ranging from 1.1 nM (P30) to 1.4 nM (P120). ERG recordings showed an amelioration of vision loss in hPi+ animals. The scotopic b-waves were significantly higher in hPi+ animals than in control rats at P90 and P120. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. hPi+ animals had 48.7% more photoreceptors than control animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in hPi+ P23H rats. Furthermore, in hPi+ rat retinas the number of rod bipolar cell bodies was greater than in control rats. Our data demonstrate that hPi expression preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in the P23H rat. These data strongly support the further development of proinsulin-based therapy to counteract retinitis pigmentosa.
Resumo:
Purpose. To investigate the spatiotemporal relationship between rod and cone degeneration in the P23H-1 rat. Methods. Control Sprague-Dawley (SD) and P23H-1 rats of ages ranging from P30 to P365 were used. Retinas were processed for whole mounts or cross sections and rods and cones were immunodetected. We used newly developed image analysis techniques to quantify the total population of L/M cones (the most abundant cones in the rat) and analyzed the rings of rod-cone degeneration. Results. In P23H-1 rats, rod degeneration occurs rapidly: first the rod outer segment shortens, at P30 there is extensive rod loss, and by P180 rod loss is almost complete except for the most peripheral retina. The numbers of L/M cones are, at all postnatal ages, lower in P23H-1 rats than in control SD rats, and decrease significantly with age (by P180). Rod and cone degeneration is spatiotemporally related and occurs in rings that appear already at P90 and spread throughout the entire retina. At P180, the rings of rod-cone degeneration are more abundant in the equatorial retina and are larger in the dorsal retina. Conclusions. This work describes for the first time that in the P23H-1 rat, rod and cone degeneration is spatiotemporally related and occurs in rings. Cone loss follows rod loss and starts very soon, even before P30, the first age analyzed here. The characteristics of the rings suggest that secondary cone degeneration is influenced by retinal position and/or other intrinsic or extrinsic factors.
Resumo:
Intraerythrocytic growth of the human malaria parasite Plasmodium falciparum depends on delivery of nutrients. Moreover, infection challenges cell volume constancy of the host erythrocyte requiring enhanced activity of cell volume regulatory mechanisms. Patch clamp recording demonstrated inwardly and outwardly rectifying anion channels in infected but not in control erythrocytes. The molecular identity of those channels remained elusive. We show here for one channel type that voltage dependence, cell volume sensitivity, and activation by oxidation are identical to ClC-2. Moreover, Western blots and FACS analysis showed protein and functional ClC-2 expression in human erythrocytes and erythrocytes from wild type (Clcn2(+/+)) but not from Clcn2(-/-) mice. Finally, patch clamp recording revealed activation of volume-sensitive inwardly rectifying channels in Plasmodium berghei-infected Clcn2(+/+) but not Clcn2(-/-) erythrocytes. Erythrocytes from infected mice of both genotypes differed in cell volume and inhibition of ClC-2 by ZnCl(2) (1 mm) induced an increase of cell volume only in parasitized Clcn2(+/+) erythrocytes. Lack of ClC-2 did not inhibit P. berghei development in vivo nor substantially affect the mortality of infected mice. In conclusion, activation of host ClC-2 channels participates in the altered permeability of Plasmodium-infected erythrocytes but is not required for intraerythrocytic parasite survival.
Resumo:
Many authors report changes in the control of the trunk muscles in people with low back pain (LBP). Although there is considerable disagreement regarding the nature of these changes, we have consistently found differential effects on the deep intrinsic and superficial muscles of the lumbopelvic region. Two issues require consideration; first, the potential mechanisms for these changes in control, and secondly, the effect or outcome of changes in control for lumbopelvic function. Recent data indicate that experimentally induced pain may replicate some of the changes identified in people with LBP. While this does not exclude the possibility that changes in control of the trunk muscles may lead to pain, it does argue that, at least in some cases, pain may cause the changes in control. There are many possible mechanisms, including changes in excitability in the motor pathway, changes in the sensory system, and factors associated. with the attention demanding, stressful and fearful aspects of pain. A new hypothesis is presented regarding the outcome from differential effects of pain on the elements of the motor system. Taken together these data argue for strategies of prevention and rehabilitation of LBP (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The aim of this study was to develop a simple, field-practical, and effective in vitro method for determining the sensitivity of fresh erythrocytic Plasmodium vivax isolates to a range of antimalarials. The method used is a modification of the standard World Health Organization (WHO) microtest for determination of P.falciparum drug sensitivity. The WHO method was modified by removing leukocytes and using a growth medium supplemented with AB(+) serum. We successfully carried out 34 in vitro drug assays on 39 P. vivax isolates collected from the Mae Sod malaria clinic, Tak Province, Thailand. The mean percentage of parasites maturing to schizonts (six or more merozoites) in control wells was 66.5% +/- 5.9% (standard deviation). This level of growth in the control wells enabled rapid microscopic determination (5 min per isolate per drug) of the MICs of chloroquine, dihydroartemisinin, WR238605 (tafenoquine), and sulfadoxine. P. vivax was relatively sensitive to chloroquine (MIC = 160 ng/ml, 50% inhibitory concentration [IC50] = 49.8 ng/ml) and dihydroartemisinin (MIC = 0.5 ng/ml, IC50 = 0.47 ng/ml). The poor response of P. vivax to both tafenoquine (MIC = 14,000 ng/ml, IC50 = 9,739 ng/ml) and sulfadoxine (MIC = 500,000 ng/ml, IC50 = 249,000 ng/ml) was due to the slow action of these drugs and the innate resistance of P. vivax to sulfadoxine. The in vitro assay developed in our study should be useful both for assessing the antimalarial sensitivity of P. vivax populations and for screening new antimalarials in the absence of long-term P. vivax cultures.
Resumo:
Objective: In this preliminary study we tested the effect of short-term carbohydrate supplementation on carbohydrate oxidation and walking performance in peripheral arterial disease. Methods: Eleven patients with peripheral arterial disease and intermittent claudication and 8 healthy control subjects completed several weeks of baseline exercise testing, then were given supplementation for 3 days with a carbohydrate solution and placebo. Maximal walking time was assessed with a graded treadmill test. Carbohydrate oxidation during a submaximal phase of this test was measured with indirect calorimetry. At the end of baseline testing a biopsy specimen was taken from the gastrocnemius muscle, and the active fraction of pyruvate dehydrogenase complex activity was determined. Results: Carbohydrate supplementation resulted in a significant increase in body weight and carbohydrate oxidation during exercise in patients with intermittent claudication and control subjects. Maximal walking time decreased by 3% in control subjects, whereas it increased by 6% in patients with intermittent claudication (group X treatment interaction, P < .05). There was a wide range of performance responses to carbohydrate supplementation among patients with claudication (-3%-37%). This effect was greater in poorer performers, and was negatively correlated (P < .05) with muscle pyruvate dehydrogenase complex activity. Conclusion: Preliminary data suggest that carbohydrate oxidation during exercise might contribute to exercise intolerance in more dysfunctional patients with intermittent claudication and that carbohydrate supplementation might be an effective therapeutic intervention in these patients.
Resumo:
The receptor protein tyrosine phosphatase density-enhanced phosphatase-1 (DEP-1) has been implicated in aberrant cancer cell growth and immune cell function, however, its function within cells has yet to be properly elucidated. To investigate the cellular function of DEP-1, stable cell lines inducibly expressing DEP-1 were generated. Induction of DEP-1 expression was found to decrease PDGF-stimulated tyrosine phosphorylation of a number of cellular proteins including the PDGF receptor, and to inhibit growth factor-stimulated phosphorylation of components of the MAPK pathway, indicating that DEP-1 antagonised PDGF receptor signalling. This was supported by data showing that DEP-1 expression resulted in a reduction in cell proliferation. DEP-1-expressing cells had fewer actin-containing microfilament bundles, reduced vinculin and paxillin-containing adhesion plaques, and were defective in interactions with fibronectin. Defective cell-substratum adhesion correlated with lack of activation of FAK in DEP-1-expressing cells. Time-lapse interference reflection microscopy of live cells revealed that although small focal contacts at the leading edge were generated in DEP-1-expressing cells, they failed to mature into stable focal adhesions, as found in control cells. Further motility analysis revealed that DEP-1-expressing cells retained limited random motility, but showed no chemotaxis towards a gradient of PDGF. In addition, cell-cell contacts were disrupted, with a change in the localisation of cadherin from discrete areas of cell-cell contact to large areas of membrane interaction, and there was a parallel redistribution of beta-catenin. These results demonstrate that DEP-1 is a negative regulator of cell proliferation, cell-substratum contacts, motility and chemotaxis in fibroblasts.
Resumo:
Purpose: To investigate the proportion of breast cancers arising inpatients with germ line BRCA1 and BRCA2 mutations expressing basal markers and developing predictive tests for identification of high-risk patients. Experimental Design: Histopathologic material from 182 tumors in BRCA1 mutation carriers, 63 BRCA2 carriers, and 109 controls, collected as part of the international Breast Cancer Linkage Consortium were immunohistochemically stained for CK14, CK5/6, CK17, epidermal growth factor receptor (EGFR), and osteonectin. Results: All five basal markers were commoner in BRCA1 tumors than in control tumors (CK14: 61% versus 12%; CK5/6: 58% versus 7%; CK17: 53% versus 10%; osteonectin: 43% versus 19%; EGFR: 67% versus 21%; P < 0.0001 in each case). In a multivariate analysis, CK14, CK5/6, and estrogen receptor (ER) remained significant predictors of BRCA1 carrier status. In contrast, the frequency of basal markers in BRCA2 tumors did not differ significant from controls. Conclusion: The use of cytokeratin staining in combination with ER and morphology provides a more accurate predictor of BRCA1 mutation status than previously available, that may be useful in selecting patients for BRCA1 mutation testing. The high percentage of BRCA1 cases positive for EGFR suggests that specific anti-tyrosine kinase therapy may be of potential benefit in these patients.
Resumo:
Our group has developed an ovine model of deep dermal, partial-thickness burn where the fetus heals scarlessly and the lamb heals with scar. The comparison of collagen structure between these two different mechanisms of healing may elucidate the process of scarless wound healing. Picrosirius staining followed by polarized light microscopy was used to visualize collagen fibers, with digital capture and analysis. Collagen deposition increased with fetal age and the fibers became thicker, changing from green (type III collagen) to yellow/red (type I collagen). The ratio of type III collagen to type I was high in the fetus (166), whereas the lamb had a much lower ratio (0.2). After burn, the ratios of type III to type I collagen did not differ from those in control skin for either fetus or lamb. The fetal tissue maintained normal tissue architecture after burn while the lamb tissue showed irregular collagen organization. In conclusion, the type or amount of collagen does not alter significantly after injury. Tissue architecture differed between fetal and lamb tissue, suggesting that scar development is related to collagen cross-linking or arrangement. This study indicates that healing in the scarless fetal wound is representative of the normal fetal growth pattern, rather than a response to burn injury.