974 resultados para Impact modeling
Resumo:
This study explores the impact of Turkey's likely entry in the European Union (EU) in terms of the EU's foreign, security and defense policies. It reviews Turkish capabilities, namely its military capabilities, which could provide the EU with valuable defense assets. There are differences related to Turkey's relations with the EU, which have increasingly spilled over into the NATO, hindering the development of cooperation over crisis management operations. The article then delves in the implications of Turkey's strategic geographical location to EU policies. It reviews how far the EU and Turkey may have convergent interests in some of the neighboring regions, especially in the Middle East.
Resumo:
This work focused on the study of the impact event on molded parts in the framework of automotive components. The influence of the impact conditions and processing parameters on the mechanical behavior of talc-filled polypropylene specimens was analyzed. The specimens were lateral-gate discs produced by injection molding, and the mechanical characterization was performed through instrumented falling weight impact tests concomitantly assisted with high-speed videography. Results analyzed using the analysis of variance (ANOVA) method have shown that from the considered parameters, only the dart diameter and test temperature have significant influence on the falling weight impact properties. Higher dart diameter leads to higher peak force and peak energy results. Conversely, higher levels of test temperatures lead to lower values of peak force and peak energy. By means of high-speed videography, a more brittle fracture was observed for experiments with higher levels of test velocity and dart diameter and lower levels of test temperature. The injection-molding process conditions assessed in this study have an influence on the impact response of moldings, mainly on the deformation capabilities of the moldings.
Resumo:
In this work it is demonstrated that the capacitance between two cylinders increases with the rotation angle and it has a fundamental influence on the composite dielectric constant. The dielectric constant is lower for nematic materials than for isotropic ones and this can be attributed to the effect of the filler alignment in the capacitance. The effect of aspect ratio in the conductivity is also studied in this work. Finally, based on previous work and by comparing to results from the literature it is found that the electrical conductivity in this type of composites is due to hopping between nearest fillers resulting in a weak disorder regime that is similar to the single junction expression.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Emotions play a central role in our daily lives, influencing the way we think and act, our health and sense of well-being, and films are by excellence the form of art that exploits our affective, perceptual and intellectual activity, holding the potential for a significant impact. Video is becoming a dominant and pervasive medium, and online video a growing entertainment activity on the web and iTV, mainly due to technological developments and the trends for media convergence. In addition, the improvement of new techniques for gathering emotional information about videos, both through content analysis or user implicit feedback through user physiological signals complemented in manual labeling from users, is revealing new ways for exploring emotional information in videos, films or TV series, and brings out new perspectives to enrich and personalize video access. In this work, we reflect on the power that emotions have in our lives, on the emotional impact of movies, and on how to address this emotional dimension in the way we classify and access movies, by exploring and evaluating the design of iFelt in its different ways to classify, access, browse and visualize movies based on their emotional impac
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor
Resumo:
Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
In a Europe increasingly aging, it is now recognized the importance and potential of the service industry for ageing well based on information and communication technologies (ICT), as exemplified by the electronic market of social services and health care, the GuiMarket, proposed by the authors. However, this new range of services requires that individuals have advanced digital skills to fully participate in society. Based on the results of a survey made on a sample of 315 individuals, this paper discusses the importance granted GuiMarket and the intended frequency of use, concluding there is a close relationship between ICT access and use that respondents anticipate making of GuiMarket and alike services.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor.
Resumo:
Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort.
Electromagnetic tracker feasibility in the design of a dental superstructure for edentulous patients
Resumo:
The success of the osseointegration concept and the Brånemark protocol is highly associated to the accuracy in the production of an implant-supported prosthesis. One of most critical steps for long-term success of these prosthesis is the accuracy obtained during the impression procedure, which is affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of 3D electromagnetic motion tracking systems as an acquisition method for modeling full-arch implant-supported prosthesis. To this extent, we propose an implant acquisition method at the patient mouth and a calibration procedure, based on a 3D electromagnetic tracker that obtains combined measurements of implant’s position and angulation, eliminating the use of any impression material. Three calibration algorithms (namely linear interpolation, higher-order polynomial and Hardy multiquadric) were tested to compensate for the electromagnetic tracker distortions introduced by the presence of nearby metals. Moreover, implants from different suppliers were also tested to study its impact on tracking accuracy. The calibration methodology and the algorithms employed proved to implement a suitable strategy for the evaluation of novel dental impression techniques. However, in the particular case of the evaluated electromagnetic tracking system, the order of magnitude of the obtained errors invalidates its use for the full-arch modeling of implant-supported prosthesis.
Resumo:
Textiles and tourism sectors are two important sectors in Portuguese economy. Its high exposure to both internal and international economy volatility transform the companies operating in these economic sectors especially vulnerable to recent economic crises in Portugal and European Union. The objective of this paper is to evaluate and understand the impact of size and age on the financial health of textile and tourism companies, measured by economic indices. An empirical based model is proposed. Its implications are derived and tested on a sample of 4061 Portuguese companies from textile and tourism sector, during the period 2005-2009. The results conclude that age has a stronger impact on the risk of failure than size. Whereas the effect of age is generally positive regarding the financial health of the company, the effect of size is less clear and depends on the age of the company.
Resumo:
Textiles and tourism sectors are two important sectors in Portuguese economy. Its high exposure to both internal and international economy volatility transform the companies operating in these economic sectors especially vulnerable to recent economic crises in Portugal and European Union. The objective of this paper is to evaluate and understand the impact of size and age on the financial health of textile and tourism companies, measured by economic indices. An empirical based model is proposed. Its implications are derived and tested on a sample of 4061 Portuguese companies from textile and tourism sector, during the period 2005-2009. The results conclude that age has a stronger impact on the risk of failure than size. Whereas the effect of age is generally positive regarding the financial health of the company, the effect of size is less clear and depends on the age of the company.