958 resultados para Illinois. Bureau of Water
Resumo:
120
Resumo:
Short rotation willow coppice (SRWC) treatment of biosolids is limited by the oversupply of biosolid derived phosphorus; this can lead to eventual losses of phosphorus to water. Water treatment residuals (WTR), a by-product of potable water treatment, have been identified as a viable soil amendment for mitigation of phosphorus loss. WTR exploit the capacity of internally held aluminium oxide-hydroxide complexes to immobilise labile phosphorus. However indiscriminate additions to plots can result in inadequate control or excessive immobilization of soluble P, leading to crop deficiencies. Four commercially grown common willow (Salix) genotypes (Terra Nova, Endeavour, Resolution and Tora) were grown in soil amended with WTR at five different application rates (0, 10, 25, 50 and 100 tonne ha-1 air-dry basis) in a glasshouse pot experiment. The effects of application rates on plant yields, tissue P concentrations, P uptake and soil labile P availability were measured. Results indicate labile P was reduced with increasing WTR application rates, without any negative agronomic impacts.
Resumo:
Access to potable water is frequently said to be the defining world crisis of the twenty-first century. The argument is usually framed in terms of either direct environmental constraints or various totalistic views of how the political determines outcomes. There is little or no scope for the agency of practical politics. Both physical and human geographers tend to be dismissive of the possibilities of democratic politics ever resolving crises such as those of the geography of water provision, in part because of views of scientific expertise that devalue popular participation in decisions about technical matters such as water quality and distribution. Such dismissal also has much to do with a more generalized denigration of politics. Politics (the art of political deliberation, negotiation, and compromise) needs defending against its critics and many of its practitioners. Showing how politics is at work around the world in managing water problems and identifying the challenges that water problems pose for politics provides a retort to those who can only envisage inevitable destruction or a totalistic political panacea as the outcomes of the crisis of the century.
Resumo:
The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.