989 resultados para ION BOMBARDMENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are ligand-gated cation channels activated by extracellular protons. In periphery, they contribute to sensory transmission, including that of nociception and pain. Here we characterized ASIC-like currents in dorsal horn neurons of the rat spinal cord and their functional modulation in pathological conditions. Reverse transcriptase-nested PCR and Western blotting showed that three ASIC isoforms, ASIC1a, ASIC2a, and ASIC2b, are expressed at a high level in dorsal horn neurons. Electrophysiological and pharmacological properties of the proton-gated currents suggest that homomeric ASIC1a and/or heteromeric ASIC1a + 2b channels are responsible for the proton-induced currents in the majority of dorsal horn neurons. Acidification-induced action potentials in these neurons were compatible in a pH-dependent manner with the pH dependence of ASIC-like current. Furthermore, peripheral complete Freund's adjuvant-induced inflammation resulted in increased expression of both ASIC1a and ASIC2a in dorsal horn. These results support the idea that the ASICs of dorsal horn neurons participate in central sensory transmission/modulation under physiological conditions and may play important roles in inflammation-related persistent pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) composed of ASIC1a subunit exhibit a high Ca2+ permeability and play important roles in synaptic plasticity and acid-induced cell death. Here, we show that ischemia enhances ASIC currents through the phosphorylation at Ser478 and Ser479 of ASIC1a, leading to exacerbated ischemic cell death. The phosphorylation is catalyzed by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, as a result of activation of NR2B-containing N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) during ischemia. Furthermore, NR2B-specific antagonist, CaMKII inhibitor, or overexpression of mutated form of ASIC1a with Ser478 or Ser479 replaced by alanine (ASICla-S478A, ASIC1a-S479A) in cultured hippocampal neurons prevented ischemia-induced enhancement of ASIC currents, cytoplasmic Ca2+ elevation, as well as neuronal death. Thus, NMDAR-CaMKII cascade is functionally coupled to ASICs and contributes to acidotoxicity during ischemia. Specific blockade of NMDAR/CaMKII-ASIC coupling may reduce neuronal death after ischemia and other pathological conditions involving excessive glutamate release and acidosis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of chronic pain involves alterations in peripheral nociceptors as well as elevated neuronal activity in multiple regions of the CNS. Previous pharmacological and behavioral studies suggest that peripheral acid-sensing ion channels (ASICs) cont

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of modeling ion implantation in a multilayer target using moments of a statistical distribution and numerical integration for dose calculation in each target layer is applied to the modelling of As+ in poly-Si/SiO2/Si. Good agreement with experiment is obtained. Copyright © 1985 by The Institute of Electrical and Electronics Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly c-axis oriented ZnO films have been deposited at room temperature with high rates (∼50 nm·min -1) using an innovative remote plasma sputtering configuration, which allows independent control of the plasma density and the sputtering ion energy. The ZnO films deposited possess excellent crystallographic orientation, high resistivity (>10 9 Ω·m), and exhibit very low surface roughness. The ability to increase the sputtering ion energy without causing unwanted Ar + bombardment onto the substrate has been shown to be crucial for the growth of films with excellent c-axis orientation without the need of substrate heating. In addition, the elimination of the Ar + bombardment has facilitated the growth of films with very low defect density and hence very low intrinsic stress (100 MPa for 3 μm-thick films). This is over an order of magnitude lower than films grown with a standard magnetron sputtering system. © 2012 American Institute of Physics.