956 resultados para INTERSTELLAR TURBULENCE
Resumo:
The analysis of the wind flow around buildings has a great interest from the point of view of the wind energy assessment, pollutant dispersion control, natural ventilation and pedestrians wind comfort and safety. Since LES turbulence models are computationally time consuming when applied to real geometries, RANS models are still widely used. However, RANS models are very sensitive to the chosen turbulence parametrisation and the results can vary according to the application. In this investigation, the simulation of the wind flow around an isolated building is performed using various types of RANS turbulence models in the open source code OpenFOAM, and the results are compared with benchmark experimental data. In order to confirm the numerical accuracy of the simulations, a grid dependency analysis is performed and the convergence index and rate are calculated. Hit rates are calculated for all the cases and the models that successfully pass a validation criterion are analysed at different regions of the building roof, and the most accurate RANS models for the modelling of the flow at each region are identified. The characteristics of the wind flow at each region are also analysed from the point of view of the wind energy generation, and the most adequate wind turbine model for the wind energy exploitation at each region of the building roof is chosen.
Resumo:
Until recently the dynamical evolution of the interstellar medium (ISM) was simu- lated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.
Resumo:
Entrepreneurial marketing has gained popularity in both the entrepreneurship and marketing disciplines in recent times. The success of ventures that have pursued what are considered non-traditional marketing approaches has been attributed to entrepreneurial marketing practices. Despite the multitude of marketing concepts and models, there are prominent venture successes that do not conform to these and have thus been put in the ''entrepreneurial'' box. One only has to look to the ''Virgin'' model to put this in context. Branson has proven for example that not ''sticking to the knitting'' can work with the ways the Virgin portfolio has been diversified. Consequently, an entrepreneurial orientation is considered a desirable philosophy and has become prominent in such industries as airlines and information technology. Miles and Arnold (1991) found that entrepreneurial orientation is positively correlated to marketing orientation. They propose that entrepreneurial orientation is a strategic response by firms to turbulence in the environment. While many marketing successes are analysed in hindsight using traditional marketing concepts and strategies, there are those that challenge standard marketing textbook recommendations. Marketing strategy is often viewed as a process of targeting, segmenting and positioning (STP). Academics and consultants advocate this approach along with the marketing and business plans. The reality however is that a number of businesses do not practice these and pursue alternative approaches. Other schools of thought and business models have been developing to explain differences in orientation such as branding (Keller 2001), the service-dominant logic (Vargo and Lusch 2004) and effectuation logic (Sarasvathy 2001). This indicates that scholars are now looking to cognate fields to explain a given phenomenon beyond their own disciplines. Bucking this trend is a growing number of researchers working at the interface between entrepreneurship and marketing. There is now an emerging body of work dedicated to this interface, hence the development of entrepreneurial marketing as an alternative to the traditional approaches. Hills and Hultman (2008:3) define entrepreneurial marketing as ''a spirit, an orientation as well as a process of passionately pursuing opportunities and launching and growing ventures that create perceived customer value through relationships by employing innovativeness, creativity, selling, market immersion, networking and flexibility.'' Although it started as a special interest group, entrepreneurial marketing is now gaining recognition in mainstream entrepreneurship and marketing literature. For example new marketing textbooks now incorporate an entrepreneurial marketing focus (Grewal and Levy 2008). The purpose of this paper is to explore what entrepreneurial approaches are used by entrepreneurs and their impact on the success of marketing activities. Methodology/Key Propositions In order to investigate this, we employ two cases: 42Below, vodka producers from New Zealand and Penderyn Distillery, whisky distillers from Wales. The cases were chosen based on the following criteria. Firstly, both companies originate from small economies. Secondly, both make products (spirits) from locations that are not traditionally regarded as producers of their flagship products and thirdly, the two companies are different from each other in terms of their age. Penderyn is an old company established in 1882, whereas 42Below was founded only in 1999. Vodka has never been associated with New Zealand. By the same token, whisky has always been associated with Scotland and Ireland but never been with Wales. Both companies defied traditional stereotypes in marketing their flagship products and found international success. Using a comparative a case study approach, we use Covin and Slevin's (1989) set of items that purport to measure entrepreneurial orientation and apply a qualitative lens on the approaches of both companies. These are: 1. cultural emphases on innovation and R&D 2. high rate of new product introduction 3. bold, innovative product development 4. initiator proactive posture 5. first to introduce new technologies and products 6. competitive posture toward competitor 7. strong prolictivity for high risk, high return projects 8. environment requires boldness to achieve objectives 9. when faced with risk, adopts aggressive, bold posture. Results and Implications We find that both companies have employed entrepreneurial marketing approaches but with different intensities. While acknowledging that they are different from the norm, the specifics of their individual approaches are dissimilar. Both companies have positioned their products at the premium end of their product categories and have emphasised quality and awards in their communication strategies. 42Below has carved an image of irreverence and being non-conformist. They have unashamedly utilised viral marketing and entered international markets by training bartenders and hosting unconventional events. They use edgy language such as vodka university, vodka professors and vodka ambassadors. Penderyn Distillery has taken a more traditional approach to marketing its products and portraying romantic images of age-old tradition of distilling as key to their positioning. Both companies enjoy success as evidenced by industry awards and international acclaim.
Resumo:
Background: Aerosol production during normal breathing is often attributed to turbulence in the respiratory tract. That mechanism is not consistent with a high degree of asymmetry between aerosol production during inhalation and exhalation. The objective was to investigate production symmetry during breathing. Methods: The aerosol size distribution in exhaled breath was examined for different breathing patterns including normal breathing, varied breath holding periods and contrasting inhalation and exhalation rates. The aerosol droplet size distribution measured in the exhaled breath was examined in real time using an aerodynamic particle sizer. Results and Conclusions: The dependence of the particle concentration decay rate on diameter during breath holding was consistent with gravitational settling in the alveolar spaces. Also, deep exhalation resulted in a 4 to 6 fold increase in concentration and rapid inhalation produced a further 2 to 3 fold increase in concentration. In contrast rapid exhalation had little effect on the measured concentration. A positive correlation of the breath aerosol concentration with subject age was observed. The results were consistent with the breath aerosol being produced through fluid film rupture in the respiratory bronchioles in the early stages of inhalation and the resulting aerosol being drawn into the alveoli and held before exhalation. The observed asymmetry of production in the breathing cycle with very little aerosol being produced during exhalation, is inconsistent with the widely assumed turbulence induced aerosolization mechanism.
Resumo:
Toll plazas are particularly susceptible to build-ups of vehicle-emitted pollutants because vehicles pass through in low gear. To look at this, three-dimensional computational fluid dynamics simulations of pollutant dispersion are used on the standard k e turbulence model. The effects of wind speed, wind direction and topography on pollutant dispersion were discussed. The Wuzhuang toll plaza on the Hefei-Nanjing expressway is considered, and the effects of the retaining walls along both sides of the plaza on pollutant dispersion is analysed. There are greater pollutant concentrations near the tollbooths as the angle between the direction of the wind and traffic increases implying that retaining walls impede dispersion. The slope of the walls has little influence on the variations in pollutant concentration.
Resumo:
In this computational study we investigate the role of turbulence in ideal axisymmetric vortex breakdown. A pipe geometry with a slight constriction near the inlet is used to stabilise the location of the breakdown within the computed domain. Eddy-viscosity and differential Reynolds stress models are used to model the turbulence. Changes in upstream turbulence levels, flow Reynolds and Swirl numbers are considered. The different computed solutions are monitored for indications of different breakdown flow configurations. Trends in vortex breakdown due to turbulent flow conditions are identified and discussed.
Resumo:
Two-stroke outboard boat engines using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. The purpose of this work is to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) operating at 1500 rpm and 3000 rpm. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller. Both the mean axial velocity profile and the mean concentration profile showed self-similarity. Further, the stand deviation growth curve was linear. The effects of propeller speed and dye release location were also investigated.
Resumo:
This study has important implications for marketing theory and practice. In an era of turbulent market environments, the organisational ability to sense and seize market opportunities and to reconfigure the resource base accordingly, has significant effects on performance. This paper uses a dynamic capability framework to explain more explicitly the intricacies of the relationship between sensing and seizing of market opportunities and reconfiguring the resource base (i.e. dynamic capabilities) and the resource base. We investigate how the attributes of dynamic capability deployment, timing, frequency and speed, influence the resource base. We test the proposed framework using survey data from 228 large organisations. Findings show that the timing and frequency of dynamic capability deployment have significant effects on the resource base.
Resumo:
The literature identifies several models that describe inter-phase mass transfer, key to the emission process. While the emission process is complex and these models may be more or less successful at predicting mass transfer rates, they identify three key variables for a system involving a liquid and an air phase in contact with it: • A concentration (or partial pressure) gradient driving force; • The fluid dynamic characteristics within the liquid and air phases, and • The chemical properties of the individual components within the system. In three applied research projects conducted prior to this study, samples collected with two well-known sampling devices resulted in very different odour emission rates. It was not possible to adequately explain the differences observed. It appeared likely, however, that the sample collection device might have artefact effects on the emission of odorants, i.e. the sampling device appeared to have altered the mass transfer process. This raised the obvious question: Where two different emission rates are reported for a single source (differing only in the selection of sampling device), and a credible explanation for the difference in emission rate cannot be provided, which emission rate is correct? This research project aimed to identify the factors that determine odour emission rates, the impact that the characteristics of a sampling device may exert on the key mass transfer variables, and ultimately, the impact of the sampling device on the emission rate itself. To meet these objectives, a series of targeted reviews, and laboratory and field investigations, were conducted. Two widely-used, representative devices were chosen to investigate the influence of various parameters on the emission process. These investigations provided insight into the odour emission process generally, and the influence of the sampling device specifically.
Resumo:
Since 1996, ther provision of a refuge floor has been a mandatory feature for all new tall buildings in Hong Kong. These floors are designed to provide for building occupants a fire safe environment that is also free from smoke. However, the desired cross ventilation on these floors to achieve the removal of smoke, assumed by the Building Codes of Hong Kong, is still being questioned so that a further scientific study of the wind-induced ventilation of a refuge fllor is needed. This paper presents an investigation into this issue. The developed computational technique used in this paper was adopted to study the wind-induced natural ventilation on a refuge floor. The aim of the investigation was to establish whether a refuge floor with a cetnral core and having cross ventilation produced by only two open opposite external side walls on the refuge floor would provide the required protection in all situations taking into account behaviour of wind due to different floor heights, wall boundary conditions and turbulence intensity profiles. The results revealed that natural ventilation can be increased by increasng the floor heigh provided the wind angle to the building is less than 90 degrees. The effectiveness of the solution was greatly reduced when the wind was blowing at 90 degrees to the refuge floor opening.
Resumo:
The health of tollbooth workers is seriously threatened by long-term exposure to polluted air from vehicle exhausts. Using traffic data collected at a toll plaza, vehicle movements were simulated by a system dynamics model with different traffic volumes and toll collection procedures. This allowed the average travel time of vehicles to be calculated. A three-dimension Computational Fluid Dynamics (CFD) model was used with a k–ε turbulence model to simulate pollutant dispersion at the toll plaza for different traffic volumes and toll collection procedures. It was shown that pollutant concentration around tollbooths increases as traffic volume increases. Whether traffic volume is low or high (1500 vehicles/h or 2500 vehicles/h), pollutant concentration decreases if electronic toll collection (ETC) is adopted. In addition, pollutant concentration around tollbooths decreases as the proportion of ETC-equipped vehicles increases. However, if the proportion of ETC-equipped vehicles is very low and the traffic volume is not heavy, then pollutant concentration increases as the number of ETC lanes increases.
Resumo:
Two-stroke outboard boat engines using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. The purpose of this work is to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. The properties of the jet were examined far enough downstream to be relevant to the eventual modelling of the mixing problem. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) operating at 1500 rpm and 3000 rpm in a weak co-flow of 0.04 m/s. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller, which was placed in a glass-walled flume 0.4 m wide with a free surface depth of 0.15 m. The jet and scalar plume development were compared to that of a classical free round jet. Further, results pertaining to radial distribution, self similarity, standard deviation growth, maximum value decay and integral fluxes of velocity and concentration were presented and fitted with empirical correlations. Furthermore, propeller induced mixing and pollutant source concentration from a two-stroke engine were estimated.
Resumo:
The flood flow in urbanised areas constitutes a major hazard to the population and infrastructure as seen during the summer 2010-2011 floods in Queensland (Australia). Flood flows in urban environments have been studied relatively recently, although no study considered the impact of turbulence in the flow. During the 12-13 January 2011 flood of the Brisbane River, some turbulence measurements were conducted in an inundated urban environment in Gardens Point Road next to Brisbane's central business district (CBD) at relatively high frequency (50 Hz). The properties of the sediment flood deposits were characterised and the acoustic Doppler velocimeter unit was calibrated to obtain both instantaneous velocity components and suspended sediment concentration in the same sampling volume with the same temporal resolution. While the flow motion in Gardens Point Road was subcritical, the water elevations and velocities fluctuated with a distinctive period between 50 and 80 s. The low frequency fluctuations were linked with some local topographic effects: i.e, some local choke induced by an upstream constriction between stairwells caused some slow oscillations with a period close to the natural sloshing period of the car park. The instantaneous velocity data were analysed using a triple decomposition, and the same triple decomposition was applied to the water depth, velocity flux, suspended sediment concentration and suspended sediment flux data. The velocity fluctuation data showed a large energy component in the slow fluctuation range. For the first two tests at z = 0.35 m, the turbulence data suggested some isotropy. At z = 0.083 m, on the other hand, the findings indicated some flow anisotropy. The suspended sediment concentration (SSC) data presented a general trend with increasing SSC for decreasing water depth. During a test (T4), some long -period oscillations were observed with a period about 18 minutes. The cause of these oscillations remains unknown to the authors. The last test (T5) took place in very shallow waters and high suspended sediment concentrations. It is suggested that the flow in the car park was disconnected from the main channel. Overall the flow conditions at the sampling sites corresponded to a specific momentum between 0.2 to 0.4 m2 which would be near the upper end of the scale for safe evacuation of individuals in flooded areas. But the authors do not believe the evacuation of individuals in Gardens Point Road would have been safe because of the intense water surges and flow turbulence. More generally any criterion for safe evacuation solely based upon the flow velocity, water depth or specific momentum cannot account for the hazards caused by the flow turbulence, water depth fluctuations and water surges.