851 resultados para INTERLAMINAR FRACTURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We presented a unique case of a high school athlete who suffered from a coracoid process fracture following a collision with an opposing player. This fracture is commonly misdiagnosed as a clavicular fracture or AC joint sprain. Initial radiographic examination may fail to identify the fracture site. Understanding the clinical features of this injury is an important prerequisite to its overall management. Any misdiagnosis or alteration from the appropriate course of treatment can inhibit return to play and may be avoided by using indicated diagnostic evaluation tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To describe the prolonged rehabilitation program for a Jones fracture in a Division I-A American football player. Background: A 21 year old, African American, collegiate football player (body mass= 264 lb; height= 76.5 in; body fat= 16.0%) complained of a sharp pain at the dorsal aspect of the left foot. The athlete experiences a compressive force to the fifth metatarsal and upon evaluation, mild swelling was present along the lateral aspect of the foot. Differential Diagnosis: Jones fracture, metatarsal fracture, bone contusion. Treatment: An intramedullary fixation surgery was scheduled two weeks post injury, to correct and stabilize the fracture. Intramedullary fixation is a method of mending the bone internally with a screw, wire, or metal plate along the fractured bone length wise. Following surgery the athlete continued use of crutches for ambulation and was placed in a removable walking boot for 5 weeks. Uniqueness: This case presented a unique challenge in the rehabilitation program, as the athlete experienced slow formation of the bone callus and therefore a prolonged rate of recovery. The athlete was in a walking boot longer than expected (2 weeks longer than anticipated) which inhibited advancement in his rehabilitation due to a slow bone callus formation. A soft callus usually begins to form at day 5 following injury, but documentation was incomplete, and a hypothesis for slow bone callus formation could be secondary to lengthened time between injury occurrence and injury reporting. The athlete may have been weight bearing during the early callus formation, but healing may have been prohibited. Also, vascularization in the area is already limited and may also have played a role in delayed bone growth. Conclusions: Although the return to participation was longer than expected, the rehabilitation program was successful in returning the athlete to competition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research analyzed the spatial relationship between a mega-scale fracture network and the occurrence of vegetation in an arid region. High-resolution aerial photographs of Arches National Park, Utah were used for digital image processing. Four sets of large-scale joints were digitized from the rectified color photograph in order to characterize the geospatial properties of the fracture network with the aid of a Geographic Information System. An unsupervised landcover classification was carried out to identify the spatial distribution of vegetation on the fractured outcrop. Results of this study confirm that the WNW-ESE alignment of vegetation is dominantly controlled by the spatial distribution of the systematic joint set, which in turn parallels the regional fold axis. This research provides insight into the spatial heterogeneity inherent to fracture networks, as well as the effects of jointing on the distribution of surface vegetation in desert environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nursing Case Management has motivated nurses to examine the effects of care provided to patients, and to devise means of improving this care. The success of this nursing care delivery model is well documented among a variety of acute and chronically ill patients. Utilizing nonparametric ANOVA for comparison of two means, this study investigates the outcome of the implementation of a nursingcase management model on an orthopedic unit of a local hospital. A convenience sample (N=149) of hip-fracture patients for two separate eight months charting periods were used. The first period was pre-case management and the second period was after the implementation of nursing managed care on the unit. Results suggested that nursing case management was effective in reducing the total length of hospital stay and post-operative days significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum oxide (A1203, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of A1203 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for A1203 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed A1203-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried A1203 (A-SD), A1203 blended with 4wt.% CNT (A4C-B), composite spray dried A1203-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8CSD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20 % (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43 % (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The A1203/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the A1203/CNTinterface. Contrasting storage modulus was obtained by nanoindentation (~ 210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New data on lithology and stratigraphy of Cenozoic sediments from the Clarion Transform Fault Zone (Pacific Ocean) have been obtained on the base of polygon studies. It has been established that on different blocks (uplifted and subsided) of the Clarion tectonic structure deposits of different age (Eocene to Quaternary) occur. Unconsolidated sediments have been deposited under pelagic conditions since Eocene (probably, since Early Cretaceous) until now. Their mineral composition and content of different ore components are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements The authors thank the Ministry of Natural Resources in Iraqi Kurdistan Region for permission to publish this paper. Gulf Keystone Petroleum Ltd. and HKN Energy Ltd. are acknowledged for providing the subsurface datasets. Great thanks to Colin Taylor at the University of Aberdeen for his assistance in the laboratory work. Thoughtful reviews by two anonymous referees improved the clarity of the paper. Graham Banks is thanked for his helpful and constructive review on a late version of the manuscript, which has significantly improved this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements We thank all the participants who took part, the research fellows (Kate Taylor, Robert Caslake, David McGhee, Angus Macleod) and nurses (Clare Harris, Joanna Gordon, Anne Hayman, Hazel Forbes) who helped assess the participants, and the study secretaries (Susan Kilpatrick, Pam Rebecca) and data management team (Katie Wilde, David Ritchie). The PINE study was funded by the BMA Doris Hillier award, Parkinson's UK, the RS McDonald Trust, NHS Grampian Endowments, SPRING and the BUPA Foundation. None of the funders had any influence in the study design, the collection, analysis and interpretation of the data, the writing of the report or the decision to submit the article for publication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this work is to develop and employ numerical methods that provide characterization of granular microstructures, dynamic fragmentation of brittle materials, and dynamic fracture of three-dimensional bodies.

We first propose the fabric tensor formalism to describe the structure and evolution of lithium-ion electrode microstructure during the calendaring process. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Applying this technique to X-ray computed tomography of cathode microstructure, we show that fabric tensors capture the evolution of the inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode.

We then shift focus to the development and analysis of fracture models within finite element simulations. A difficult problem to characterize in the realm of fracture modeling is that of fragmentation, wherein brittle materials subjected to a uniform tensile loading break apart into a large number of smaller pieces. We explore the effect of numerical precision in the results of dynamic fragmentation simulations using the cohesive element approach on a one-dimensional domain. By introducing random and non-random field variations, we discern that round-off error plays a significant role in establishing a mesh-convergent solution for uniform fragmentation problems. Further, by using differing magnitudes of randomized material properties and mesh discretizations, we find that employing randomness can improve convergence behavior and provide a computational savings.

The Thick Level-Set model is implemented to describe brittle media undergoing dynamic fragmentation as an alternative to the cohesive element approach. This non-local damage model features a level-set function that defines the extent and severity of degradation and uses a length scale to limit the damage gradient. In terms of energy dissipated by fracture and mean fragment size, we find that the proposed model reproduces the rate-dependent observations of analytical approaches, cohesive element simulations, and experimental studies.

Lastly, the Thick Level-Set model is implemented in three dimensions to describe the dynamic failure of brittle media, such as the active material particles in the battery cathode during manufacturing. The proposed model matches expected behavior from physical experiments, analytical approaches, and numerical models, and mesh convergence is established. We find that the use of an asymmetrical damage model to represent tensile damage is important to producing the expected results for brittle fracture problems.

The impact of this work is that designers of lithium-ion battery components can employ the numerical methods presented herein to analyze the evolving electrode microstructure during manufacturing, operational, and extraordinary loadings. This allows for enhanced designs and manufacturing methods that advance the state of battery technology. Further, these numerical tools have applicability in a broad range of fields, from geotechnical analysis to ice-sheet modeling to armor design to hydraulic fracturing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predictive capability of high fidelity finite element modelling, to accurately capture damage and crush behaviour of composite structures, relies on the acquisition of accurate material properties, some of which have necessitated the development of novel approaches. This paper details the measurement of interlaminar and intralaminar fracture toughness, the non-linear shear behaviour of carbon fibre (AS4)/thermoplastic Polyetherketoneketone (PEKK) composite laminates and the utilisation of these properties for the accurate computational modelling of crush. Double-cantilever-beam (DCB), four-point end-notched flexure (4ENF) and Mixed-mode bending (MMB) test configurations were used to determine the initiation and propagation fracture toughness in mode I, mode II and mixed-mode loading, respectively. Compact Tension (CT) and Compact Compression (CC) test samples were employed to determine the intralaminar longitudinal tensile and compressive fracture toughness. V-notched rail shear tests were used to measure the highly non-linear shear behaviour, associated with thermoplastic composites, and fracture toughness. Corresponding numerical models of these tests were developed for verification and yielded good correlation with the experimental response. This also confirmed the accuracy of the measured values which were then employed as input material parameters for modelling the crush behaviour of a corrugated test specimen.