935 resultados para INFORMATICS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed applications are being deployed on ever-increasing scale and with ever-increasing functionality. Due to the accompanying increase in behavioural complexity, self-management abilities, such as self-healing, have become core requirements. A key challenge is the smooth embedding of such functionality into our systems. Natural distributed systems such as ant colonies have evolved highly efficient behaviour. These emergent systems achieve high scalability through the use of low complexity communication strategies and are highly robust through large-scale replication of simple, anonymous entities. Ways to engineer this fundamentally non-deterministic behaviour for use in distributed applications are being explored. An emergent, dynamic, cluster management scheme, which forms part of a hierarchical resource management architecture, is presented. Natural biological systems, which embed self-healing behaviour at several levels, have influenced the architecture. The resulting system is a simple, lightweight and highly robust platform on which cluster-based autonomic applications can be deployed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a simple approach to the so-called frame problem based on some ordinary set operations, which does not require non-monotonic reasoning. Following the notion of the situation calculus, we shall represent a state of the world as a set of fluents, where a fluent is simply a Boolean-valued property whose truth-value is dependent on the time. High-level causal laws are characterised in terms of relationships between actions and the involved world states. An effect completion axiom is imposed on each causal law, which guarantees that all the fluents that can be affected by the performance of the corresponding action are always totally governed. It is shown that, compared with other techniques, such a set operation based approach provides a simpler and more effective treatment to the frame problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes work towards the deployment of flexible self-management into real-time embedded systems. A challenging project which focuses specifically on the development of a dynamic, adaptive automotive middleware is described, and the specific self-management requirements of this project are discussed. These requirements have been identified through the refinement of a wide-ranging set of use cases requiring context-sensitive behaviours. A sample of these use-cases is presented to illustrate the extent of the demands for self-management. The strategy that has been adopted to achieve self-management, based on the use of policies is presented. The embedded and real-time nature of the target system brings the constraints that dynamic adaptation capabilities must not require changes to the run-time code (except during hot update of complete binary modules), adaptation decisions must have low latency, and because the target platforms are resource-constrained the self-management mechanism have low resource requirements (especially in terms of processing and memory). Policy-based computing is thus and ideal candidate for achieving the self-management because the policy itself is loaded at run-time and can be replaced or changed in the future in the same way that a data file is loaded. Policies represent a relatively low complexity and low risk means of achieving self-management, with low run-time costs. Policies can be stored internally in ROM (such as default policies) as well as externally to the system. The architecture of a designed-for-purpose powerful yet lightweight policy library is described. A suitable evaluation platform, supporting the whole life-cycle of feasibility analysis, concept evaluation, development, rigorous testing and behavioural validation has been devised and is described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rule testing in transport scheduling is a complex and potentially costly business problem. This paper proposes an automated method for the rule-based testing of business rules using the extensible Markup Language for rule representation and transportation. A compiled approach to rule execution is also proposed for performance-critical scheduling systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. However, with the recent adoption of more explorative tools, like Bayesian networks, in predictive ecology, few assumptions can be made about the data and complex, spatially varying interactions can be recovered from collected field data. In this study, we compare Bayesian network modelling approaches accounting for latent effects to reveal species dynamics for 7 geographically and temporally varied areas within the North Sea. We also apply structure learning techniques to identify functional relationships such as prey–predator between trophic groups of species that vary across space and time. We examine if the use of a general hidden variable can reflect overall changes in the trophic dynamics of each spatial system and whether the inclusion of a specific hidden variable can model unmeasured group of species. The general hidden variable appears to capture changes in the variance of different groups of species biomass. Models that include both general and specific hidden variables resulted in identifying similarity with the underlying food web dynamics and modelling spatial unmeasured effect. We predict the biomass of the trophic groups and find that predictive accuracy varies with the models' features and across the different spatial areas thus proposing a model that allows for spatial autocorrelation and two hidden variables. Our proposed model was able to produce novel insights on this ecosystem's dynamics and ecological interactions mainly because we account for the heterogeneous nature of the driving factors within each area and their changes over time. Our findings demonstrate that accounting for additional sources of variation, by combining structure learning from data and experts' knowledge in the model architecture, has the potential for gaining deeper insights into the structure and stability of ecosystems. Finally, we were able to discover meaningful functional networks that were spatially and temporally differentiated with the particular mechanisms varying from trophic associations through interactions with climate and commercial fisheries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of different factors (spawning biomass, environmental conditions) on recruitment is a subject of great importance in the management of fisheries, recovery plans and scenario exploration. In this study, recently proposed supervised classification techniques, tested by the machine-learning community, are applied to forecast the recruitment of seven fish species of North East Atlantic (anchovy, sardine, mackerel, horse mackerel, hake, blue whiting and albacore), using spawning, environmental and climatic data. In addition, the use of the probabilistic flexible naive Bayes classifier (FNBC) is proposed as modelling approach in order to reduce uncertainty for fisheries management purposes. Those improvements aim is to improve probability estimations of each possible outcome (low, medium and high recruitment) based in kernel density estimation, which is crucial for informed management decision making with high uncertainty. Finally, a comparison between goodness-of-fit and generalization power is provided, in order to assess the reliability of the final forecasting models. It is found that in most cases the proposed methodology provides useful information for management whereas the case of horse mackerel is an example of the limitations of the approach. The proposed improvements allow for a better probabilistic estimation of the different scenarios, i.e. to reduce the uncertainty in the provided forecasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se analizan y describen las principales líneas de trabajo de la Web Semántica en el ámbito de los archivos de televisión. Para ello, se analiza y contextualiza la web semántica desde una perspectiva general para posteriormente analizar las principales iniciativas que trabajan con lo audiovisual: Proyecto MuNCH, Proyecto S5T, Semantic Television y VideoActive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Cadena Datos-Información-Conocimiento (DIC), denominada “Jerarquía de la Información” o “Pirámide del Conocimiento”, es uno de los modelos más importantes en la Gestión de la Información y la Gestión del Conocimiento. Por lo general, la estructuración de la cadena se ha ido definiendo como una arquitectura en la que cada elemento se levanta sobre el elemento inmediatamente inferior; sin embargo no existe un consenso en la definición de los elementos, ni acerca de los procesos que transforman un elemento de un nivel a uno del siguiente nivel. En este artículo se realiza una revisión de la Cadena Datos-Información-Conocimiento examinando las definiciones más relevantes sobre sus elementos y sobre su articulación en la literatura, para sintetizar las acepciones más comunes. Se analizan los elementos de la Cadena DIC desde la semiótica de Peirce; enfoque que nos permite aclarar los significados e identificar las diferencias, las relaciones y los roles que desempeñan en la cadena desde el punto de vista del pragmatismo. Finalmente se propone una definición de la Cadena DIC apoyada en las categorías triádicas de signos y la semiosis ilimitada de Peirce, los niveles de sistemas de signos de Stamper y las metáforas de Zeleny.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our objective was to study whether “compensatory” models provide better descriptions of clinical judgment than fast and frugal models, according to expertise and experience. Fifty practitioners appraised 60 vignettes describing a child with an exacerbation of asthma and rated their propensities to admit the child. Linear logistic (LL) models of their judgments were compared with a matching heuristic (MH) model that searched available cues in order of importance for a critical value indicating an admission decision. There was a small difference between the 2 models in the proportion of patients allocated correctly (admit or not-admit decisions), 91.2% and 87.8%, respectively. The proportion allocated correctly by the LL model was lower for consultants than juniors, whereas the MH model performed equally well for both. In this vignette study, neither model provided any better description of judgments made by consultants or by pediatricians compared to other grades and specialties.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we analyze the representation of the body in blogs by women with breast cancer. Taking into account both texts and images, we study the representation of the body on the basis of the body problems proposed by Frank (1995): control, body-relatedness, other-relatedness and desire. In the blogs studied we find a desiring and dyadic body, which is understood as part of a network of affection and care. The diagnosis of cancer can generate both dissociation, when the body is experienced as a threat, and association, a wish to be connected to it. In relation to control, a clear will of predictability is observed but traces of assumption of contingency also appear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have revealed considerable interobserver and intraobserver variation in the histological classification of preinvasive cervical squamous lesions. The aim of the present study was to develop a decision support system (DSS) for the histological interpretation of these lesions. Knowledge and uncertainty were represented in the form of a Bayesian belief network that permitted the storage of diagnostic knowledge and, for a given case, the collection of evidence in a cumulative manner that provided a final probability for the possible diagnostic outcomes. The network comprised 8 diagnostic histological features (evidence nodes) that were each independently linked to the diagnosis (decision node) by a conditional probability matrix. Diagnostic outcomes comprised normal; koilocytosis; and cervical intraepithelial neoplasia (CIN) 1, CIN II, and CIN M. For each evidence feature, a set of images was recorded that represented the full spectrum of change for that feature. The system was designed to be interactive in that the histopathologist was prompted to enter evidence into the network via a specifically designed graphical user interface (i-Path Diagnostics, Belfast, Northern Ireland). Membership functions were used to derive the relative likelihoods for the alternative feature outcomes, the likelihood vector was entered into the network, and the updated diagnostic belief was computed for the diagnostic outcomes and displayed. A cumulative probability graph was generated throughout the diagnostic process and presented on screen. The network was tested on 50 cervical colposcopic biopsy specimens, comprising 10 cases each of normal, koilocytosis, CIN 1, CIN H, and CIN III. These had been preselected by a consultant gynecological pathologist. Using conventional morphological assessment, the cases were classified on 2 separate occasions by 2 consultant and 2 junior pathologists. The cases were also then classified using the DSS on 2 occasions by the 4 pathologists and by 2 medical students with no experience in cervical histology. Interobserver and intraobserver agreement using morphology and using the DSS was calculated with K statistics. Intraobserver reproducibility using conventional unaided diagnosis was reasonably good (kappa range, 0.688 to 0.861), but interobserver agreement was poor (kappa range, 0.347 to 0.747). Using the DSS improved overall reproducibility between individuals. Using the DSS, however, did not enhance the diagnostic performance of junior pathologists when comparing their DSS-based diagnosis against an experienced consultant. However, the generation of a cumulative probability graph also allowed a comparison of individual performance, how individual features were assessed in the same case, and how this contributed to diagnostic disagreement between individuals. Diagnostic features such as nuclear pleomorphism were shown to be particularly problematic and poorly reproducible. DSSs such as this therefore not only have a role to play in enhancing decision making but also in the study of diagnostic protocol, education, self-assessment, and quality control. (C) 2003 Elsevier Inc. All rights reserved.