999 resultados para Hydrological stability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early embryogenesis in metazoa is controlled by maternally synthesized products. Among these products, the mature egg is loaded with transcripts representing approximately two thirds of the genome. A subset of this maternal RNA pool is degraded prior to the transition to zygotic control of development. This transfer of control of development from maternal to zygotic products is referred to as the midblastula transition (or MBT). It is believed that the degradation of maternal transcripts is required to terminate maternal control of development and to allow zygotic control of development to begin. Until now this process of maternal transcript degradation and the subsequent timing of the MBT has been poorly understood. I have demonstrated that in the early embryo there are two independent RNA degradation pathways, either of which is sufficient for transcript elimination. However, only the concerted action of both pathways leads to elimination of transcripts with the correct timing, at the MBT. The first pathway is maternally encoded, is triggered by egg activation, and is targeted to specific classes of mRNAs through cis-acting elements in the 3' untranslated region (UTR}. The second pathway is activated 2 hr after fertilization and functions together with the maternal pathway to ensure that transcripts are degraded by the MBT. In addition, some transcripts fail to degrade at select subcellular locations adding an element of spatial control to RNA degradation. The spatial control of RNA degradation is achieved by protecting, or masking, transcripts from the degradation machinery. The RNA degradation and protection events are regulated by distinct cis-elements in the 3' untranslated region (UTR). These results provide the first systematic dissection of this highly conserved process in development and demonstrate that RNA degradation is a novel mechanism used for both temporal and spatial control of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a study of the dynamical stability of nascent neutron stars resulting from the accretion induced collapse of rapidly rotating white dwarfs.

Chapter 2 and part of Chapter 3 study the equilibrium models for these neutron stars. They are constructed by assuming that the neutron stars have the same masses, angular momenta, and specific angular momentum distributions as the pre-collapse white dwarfs. If the pre-collapse white dwarf is rapidly rotating, the collapsed object will contain a high density central core of size about 20 km, surrounded by a massive accretion torus extending to hundreds of kilometers from the rotation axis. The ratio of the rotational kinetic energy to gravitational binding energy, β, of these neutron stars is all found to be less than 0.27.

Chapter 3 studies the dynamical stability of these neutron stars by numerically evolving the linearized hydrodynamical equations. A dynamical bar-mode instability is observed when the β of the star is greater than the critical value βd ≈ 0.25. It is expected that the unstable mode will persist until a substantial amount of angular momentum is carried away by gravitational radiation. The detectability of these sources is studied and it is estimated that LIGO II is unlikely to detect them unless the event rate is greater than 10-6/year/galaxy.

All the calculations on the structure and stability of the neutron stars in Chapters 2 and 3 are carried out using Newtonian hydrodynamics and gravity. Chapter 4 studies the relativistic effects on the structure of these neutron stars. New techniques are developed and used to construct neutron star models to the first post-Newtonian (1PN) order. The structures of the 1PN models are qualitatively similar to the corresponding Newtonian models, but the values of β are somewhat smaller. The maximum β for these 1PN neutron stars is found to be 0.24, which is 8% smaller than the Newtonian result (0.26). However, relativistic effects will also change the critical value βd. A detailed post-Newtonian stability analysis has yet to be carried out to study the relativistic effects on the dynamical stability of these neutron stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The olefin metathesis reaction has found many applications in polymer synthesis and more recently in organic synthesis. The use of single component late metal olefin metathesis catalysts has expanded the scope of the reaction to many new applications and has allowed for detailed study of the catalytic species.

The metathesis of terminal olefins of different steric bulk, different geometry as well as electronically different para-substituted styrenes was studied with the ruthenium based metathesis initiators, trans-(PCy3)2Cl2Ru=CHR, of different carbene substituents. Increasing olefin bulk was found to slow the rate of reaction and trans internal olefins were found to be slower to react than cis internal olefins. The kinetic product of a11 reactions was found to be the alkylidene, rather than the methylidene, suggesting the intermediacy of a 2,4-metallacycle. The observed effects were used to explain the mechanism of ring opening cross metathesis and acyclic diene metathesis polymerization. No linear electronic effects were observed.

In studying the different carbene ligands, a series of ester-carbene complexes was synthesized. These complexes were found to be highly active for the metathesis of olefinic substrates, including acrylates and trisubstituted olefins. In addition, the estercarbene moiety is thermodynamically high in energy. As a result, these complexes react to ring-open cyclohexene by metathesis to alleviate the thermodynamic strain of the ester-carbene ligand. However, ester-carbene complexes were found to be thermolytically unstable in solution.

Thermolytic decomposition pathways were studied for several ruthenium-carbene based olefin metathesis catalysts. Substituted carbenes were found to decompose through bimolecular pathways while the unsubstituted carbene (the methylidene) was found to decompose unimolecularly. The stability of several derivatives of the bis-phosphine ruthenium based catalysts was studied for its implications to ring-closing metathesis. The reasons for the activity and stability of the different ruthenium-based catalysts is discussed.

The difference in catalyst activity and initiation is discussed for the bis-phosphine based and mixed N-heterocyclic carbene/phosphine based ruthenium olefin metathesis catalysts. The mixed ligand catalysts initiate far slower than the bis-phosphine catalysts but are far more metathesis active. A scheme is proposed to explain the difference in reactivity between the two types of catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a new class of solvers for the subsonic compressible Navier-Stokes equations in general two- and three-dimensional spatial domains. The proposed methodology incorporates: 1) A novel linear-cost implicit solver based on use of higher-order backward differentiation formulae (BDF) and the alternating direction implicit approach (ADI); 2) A fast explicit solver; 3) Dispersionless spectral spatial discretizations; and 4) A domain decomposition strategy that negotiates the interactions between the implicit and explicit domains. In particular, the implicit methodology is quasi-unconditionally stable (it does not suffer from CFL constraints for adequately resolved flows), and it can deliver orders of time accuracy between two and six in the presence of general boundary conditions. In fact this thesis presents, for the first time in the literature, high-order time-convergence curves for Navier-Stokes solvers based on the ADI strategy---previous ADI solvers for the Navier-Stokes equations have not demonstrated orders of temporal accuracy higher than one. An extended discussion is presented in this thesis which places on a solid theoretical basis the observed quasi-unconditional stability of the methods of orders two through six. The performance of the proposed solvers is favorable. For example, a two-dimensional rough-surface configuration including boundary layer effects at Reynolds number equal to one million and Mach number 0.85 (with a well-resolved boundary layer, run up to a sufficiently long time that single vortices travel the entire spatial extent of the domain, and with spatial mesh sizes near the wall of the order of one hundred-thousandth the length of the domain) was successfully tackled in a relatively short (approximately thirty-hour) single-core run; for such discretizations an explicit solver would require truly prohibitive computing times. As demonstrated via a variety of numerical experiments in two- and three-dimensions, further, the proposed multi-domain parallel implicit-explicit implementations exhibit high-order convergence in space and time, useful stability properties, limited dispersion, and high parallel efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early stage of laminar-turbulent transition in a hypervelocity boundary layer is studied using a combination of modal linear stability analysis, transient growth analysis, and direct numerical simulation. Modal stability analysis is used to clarify the behavior of first and second mode instabilities on flat plates and sharp cones for a wide range of high enthalpy flow conditions relevant to experiments in impulse facilities. Vibrational nonequilibrium is included in this analysis, its influence on the stability properties is investigated, and simple models for predicting when it is important are described.

Transient growth analysis is used to determine the optimal initial conditions that lead to the largest possible energy amplification within the flow. Such analysis is performed for both spatially and temporally evolving disturbances. The analysis again targets flows that have large stagnation enthalpy, such as those found in shock tunnels, expansion tubes, and atmospheric flight at high Mach numbers, and clarifies the effects of Mach number and wall temperature on the amplification achieved. Direct comparisons between modal and non-modal growth are made to determine the relative importance of these mechanisms under different flow regimes.

Conventional stability analysis employs the assumption that disturbances evolve with either a fixed frequency (spatial analysis) or a fixed wavenumber (temporal analysis). Direct numerical simulations are employed to relax these assumptions and investigate the downstream propagation of wave packets that are localized in space and time, and hence contain a distribution of frequencies and wavenumbers. Such wave packets are commonly observed in experiments and hence their amplification is highly relevant to boundary layer transition prediction. It is demonstrated that such localized wave packets experience much less growth than is predicted by spatial stability analysis, and therefore it is essential that the bandwidth of localized noise sources that excite the instability be taken into account in making transition estimates. A simple model based on linear stability theory is also developed which yields comparable results with an enormous reduction in computational expense. This enables the amplification of finite-width wave packets to be taken into account in transition prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When flow returns to a temporary stream a certain number of plant and animal species establish themselves more or less rapidly on the stream-bed constituting the initial phase of evolution of the re-population. This phase is essentially characterised by the ”awakening” of animal species that passed the dry season in a dormant state and by the development of the first unicellular algae that constitute the periphyton. Then they are succeeded by more or less stable animal groups and the structural complexity increases. The authors of the present study aim to analyse the dynamics of community succession from the return of water to the biotope until its drying up. It is attempted to determine the influence of the duration of flow on this evolution. This work is based on the analysis of population diversity with reference to its two complementary aspects, species richness and equitability. The River Destel which was studied for this project is situated in the Gorge of Ollioules near the town of Toulon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we study the growth of a Li electrode-electrolyte interface in the presence of an elastic prestress. In particular, we focus our interest on Li-air batteries with a solid electrolyte, LIPON, which is a new type of secondary or rechargeable battery. Theoretical studies and experimental evidence show that during the process of charging the battery the replated lithium adds unevenly to the electrode surface. This phenomenon eventually leads to dendrite formation as the battery is charged and discharged numerous times. In order to suppress or alleviate this deleterious effect of dendrite growth, we put forth a study based on a linear stability analysis. Taking into account all the mechanisms of mass transport and interfacial kinetics, we model the evolution of the interface. We find that, in the absence of stress, the stability of a planar interface depends on interfacial diffusion properties and interfacial energy. Specifically, if Herring-Mullins capillarity-driven interfacial diffusion is accounted for, interfaces are unstable against all perturbations of wavenumber larger than a critical value. We find that the effect of an elastic prestress is always to stabilize planar interfacial growth by increasing the critical wavenumber for instability. A parametric study results in quantifying the extent of the prestress stabilization in a manner that can potentially be used in the design of Li-air batteries. Moreover, employing the theory of finite differences we numerically solve the equation that describes the evolution of the surface profile and present visualization results of the surface evolution by time. Lastly, numerical simulations performed in a commercial finite element software validate the theoretical formulation of the interfacial elastic energy change with respect to the planar interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sufficient stability criteria for classes of parametrically excited differential equations are developed and applied to example problems of a dynamical nature.

Stability requirements are presented in terms of 1) the modulus of the amplitude of the parametric terms, 2) the modulus of the integral of the parametric terms and 3) the modulus of the derivative of the parametric terms.

The methods employed to show stability are Liapunov’s Direct Method and the Gronwall Lemma. The type of stability is generally referred to as asymptotic stability in the sense of Liapunov.

The results indicate that if the equation of the system with the parametric terms set equal to zero exhibits stability and possesses bounded operators, then the system will be stable under sufficiently small modulus of the parametric terms or sufficiently small modulus of the integral of the parametric terms (high frequency). On the other hand, if the equation of the system exhibits individual stability for all values that the parameter assumes in the time interval, then the actual system will be stable under sufficiently small modulus of the derivative of the parametric terms (slowly varying).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis advances our physical understanding of the sensitivity of the hydrological cycle to global warming. Specifically, it focuses on changes in the longitudinal (zonal) variation of precipitation minus evaporation (P - E), which is predominantly controlled by planetary-scale stationary eddies. By studying idealized general circulation model (GCM) experiments with zonally varying boundary conditions, this thesis examines the mechanisms controlling the strength of stationary-eddy circulations and their role in the hydrological cycle. The overarching goal of this research is to understand the cause of changes in regional P - E with global warming. An understanding of such changes can be useful for impact studies focusing on water availability, ecosystem management, and flood risk.

Based on a moisture-budget analysis of ERA-Interim data, we establish an approximation for zonally anomalous P - E in terms of surface moisture content and stationary-eddy vertical motion in the lower troposphere. Part of the success of this approximation comes from our finding that transient-eddy moisture fluxes partially cancel the effect of stationary-eddy moisture advection, allowing divergent circulations to dominate the moisture budget. The lower-tropospheric vertical motion is related to horizontal motion in stationary eddies by Sverdrup and Ekman balance. These moisture- and vorticity-budget balances also hold in idealized and comprehensive GCM simulations across a range of climates.

By examining climate changes in the idealized and comprehensive GCM simulations, we are able to show the utility of the vertical motion P - E approximation for splitting changes in zonally anomalous P - E into thermodynamic and dynamic components. Shifts in divergent stationary-eddy circulations dominate changes in zonally anomalous P - E. This limits the local utility of the "wet gets wetter, dry gets drier” idea, where existing P - E patterns are amplified with warming by the increase in atmospheric moisture content, with atmospheric circulations held fixed. The increase in atmospheric moisture content manifests instead in an increase in the amplitude of the zonally anomalous hydrological cycle as measured by the zonal variance of P - E. However, dynamic changes, particularly the slowdown of divergent stationary-eddy circulations, limit the strengthening of the zonally anomalous hydrological cycle. In certain idealized cases, dynamic changes are even strong enough to reverse the tendency towards "wet gets wetter, dry gets drier” with warming.

Motivated by the importance of stationary-eddy vertical velocities in the moisture budget analysis, we examine controls on the amplitude of stationary eddies across a wide range of climates in an idealized GCM with simple topographic and ocean-heating zonal asymmetries. An analysis of the thermodynamic equation in the vicinity of topographic forcing reveals the importance of on-slope surface winds, the midlatitude isentropic slope, and latent heating in setting the amplitude of stationary waves. The response of stationary eddies to climate change is determined primarily by the strength of zonal surface winds hitting the mountain. The sensitivity of stationary-eddies to this surface forcing increases with climate change as the slope of midlatitude isentropes decreases. However, latent heating also plays an important role in damping the stationary-eddy response, and this damping becomes stronger with warming as the atmospheric moisture content increases. We find that the response of tropical overturning circulations forced by ocean heat-flux convergence is described by changes in the vertical structure of moist static energy and deep convection. This is used to derive simple scalings for the Walker circulation strength that capture the monotonic decrease with warming found in our idealized simulations.

Through the work of this thesis, the advances made in understanding the amplitude of stationary-waves in a changing climate can be directly applied to better understand and predict changes in the zonally anomalous hydrological cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspartic acid, threonine, serine and other thermally unstable amino acids have been found in fine-grained elastic sediments of advanced geologic age. The presence of these compounds in ancient sediments conflicts with experimental data determined for their simple thermal decomposition.

Recent and Late Miocene sediments and their humic acid extracts, known to contain essentially complete suites of amino acids, were heated with H2O in a bomb at temperatures up to 500°C in order to compare the thermal decomposition characteristics of the sedimentary amino compounds.

Most of the amino acids found in protein hydrolyzates are obtained from the Miocene rock in amounts 10 to 100 times less than from the Recent sediment. The two unheated humic acids are rather similar despite their great age difference. The Miocene rock appears uncontaminated by Recent carbon.

Yields of amino acids generally decline in the heated Recent sediment. Some amino compounds apparently increase with heating time in the Miocene rock.

Relative thermal stabilities of the amino acids in sediments are generally similar to those determined using pure aqueous solutions. The relative thermal stabilities of glutamic acid, glycine, and phenylalanine vary in the Recent sediment but are uniform in the Miocene rock.

Amino acids may occur in both proteins and humic complexes in the Recent sediment, while they are probably only present in stabilized organic substances in the Miocene rock. Thermal decomposition of protein amino acids may be affected by surface catalysis in the Recent sediment. The apparent activation energy for the decomposition of alanine in this sediment is 8400 calories per mole. Yields of amino compounds from the heated sediments are not affected by thermal decomposition only.

Amino acids in sediments may only be useful for geothermometry in a very general way.

A better picture of the amino acid content of older sedimentary rocks may be obtained if these sediments are heated in a bomb with H2O at temperatures around 150°C prior to HCl hydrolysis.

Leucine-isoleucine ratios may prove to be useful as indicators of amino acid sources or for evaluating the fractionation of these substances during diagenesis. Leucine-isoleucine ratios of the Recent and Miocene sediments and humic acids are identical. The humic acids may have a continental source.

The carbon-nitrogen and carbon-hydrogen ratios of sediments and humic acids increase with heating time and temperature. Ratios comparable to those in some kerogens are found in the severely heated Miocene sediment and humic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. CONFIGURATIONAL STABILITY AND REDISTRIBUTION EQUILIBRIA IN ORGANOMAGNESIUM COMPOUNDS

The dependence of the rate of inversion of a dialkylmagnesium compound on the solvent has been studied.

Examination of the temperature dependence of the nuclear magnetic resonance spectrum of 1-phenyl-2-propylmagnesium bromide in diethyl ether solution indicates that inversion of configuration at the methylene group of this Grignard reagent occurs with an approximate rate of 2 sec-1 at room temperature. This is the first example of a rapid inversion rate in a secondary Grignard reagent.

The rates of exchange of alkyl groups between dineopentylmagnesium and di-s-butylmagnesium, bis-(2-methylbutyl)-magnesium and bis-(4, 4-dimethyl-2-pentyl)-magnesium respectively in diethyl ether solution were found to be fast on the nmr time scale. However, the alkyl group exchange rate was found to be slow in a diethyl ether solution of dineopentylmagnesium and bis-(2-methylbutyl)-magnesium containing N, N, N', N'-tetramethylethylenediamine. The unsymmetrical species neopentyl-2-methylbutyl-magnesium was observed at room temperature in the nmr spectrum of the solution containing the diamine.

II. REDISTRIBUTION EQUILIBRIA IN ORGANOCADMIUM COMPOUNDS

The exchange of methyl groups in dimethylcadmium has been studied by nuclear magnetic resonance spectroscopy. Activation parameters for the methyl group exchange have been measured for a neat sample and for a solution in tetrahydrofuran. The exchange is faster in the basic solvent tetrahydrofuran relative to the neat sample and in tetrahydrofuran solution is retarded by the solvating agent N, N, N’, N’-tetramethylethylenediamine and greatly increased by cadmium bromide. The addition of methanol to a solution of dimethylcadmium in tetrahydrofuran appears to have very little effect on the rate of exchange. The exchange was found to proceed with retention of configuration. The rate-limiting step for the exchange of methyl groups in a basic solvent appears to be the dissociation of coordinating solvent from dimethylcadmium.

The equilibrium between methylcadmium bromide, dimethylcadmium and cadmium bromide in tetrahydrofuran solution has also been studied. At room temperature the interconversion of the species is very fast on the nmr time scale but at -100° distinct absorptions for methylcadmium bromide and imethylcadmium are observed.

The species ethylmethylcadmium has been observed in the nmr spectrum.

The rate of exchange of vinyl groups in a solution of divinylcadmium in tetrahydrofuran has been found to be fast on the nmr time scale.