872 resultados para Hydrologic Modeling Catchment and Runoff Computations
Resumo:
We found a significant positive correlation between local summer air temperature (May-September) and the annual sediment mass accumulation rate (MAR) in Lake Silvaplana (46°N, 9°E, 1800 m a.s.l.) during the twentieth century (r = 0.69, p < 0.001 for decadal smoothed series). Sediment trap data (2001-2005) confirm this relation with exceptionally high particle yields during the hottest summer of the last 140 years in 2003. On this base we developed a decadal-scale summer temperature reconstruction back to AD 1580. Surprisingly, the comparison of our reconstruction with two other independent regional summer temperature reconstructions (based on tree-rings and documentary data) revealed a significant negative correlation for the pre-1900 data (ie, late ‘Little Ice Age’). This demonstrates that the correlation between MAR and summer temperature is not stable in time and the actualistic principle does not apply in this case. We suggest that different climatic regimes (modern/‘Little Ice Age’) lead to changing state conditions in the catchment and thus to considerably different sediment transport mechanisms. Therefore, we calibrated our MAR data with gridded early instrumental temperature series from AD 1760-1880 (r = -0.48, p < 0.01 for decadal smoothed series) to properly reconstruct the late LIA climatic conditions. We found exceptionally low temperatures between AD 1580 and 1610 (0.75°C below twentieth-century mean) and during the late Maunder Minimum from AD 1680 to 1710 (0.5°C below twentieth-century mean). In general, summer temperatures did not experience major negative departures from the twentieth-century mean during the late ‘Little Ice Age’. This compares well with the two existing independent regional reconstructions suggesting that the LIA in the Alps was mainly a phenomenon of the cold season.
Resumo:
Wind power based generation has been rapidly growing world-wide during the recent past. In order to transmit large amounts of wind power over long distances, system planners may often add series compensation to existing transmission lines owing to several benefits such as improved steady-state power transfer limit, improved transient stability, and efficient utilization of transmission infrastructure. Application of series capacitors has posed resonant interaction concerns such as through subsynchronous resonance (SSR) with conventional turbine-generators. Wind turbine-generators may also be susceptible to such resonant interactions. However, not much information is available in literature and even engineering standards are yet to address these issues. The motivation problem for this research is based on an actual system switching event that resulted in undamped oscillations in a 345-kV series-compensated, typical ring-bus power system configuration. Based on time-domain ATP (Alternative Transients Program) modeling, simulations and analysis of system event records, the occurrence of subsynchronous interactions within the existing 345-kV series-compensated power system has been investigated. Effects of various small-signal and large-signal power system disturbances with both identical and non-identical wind turbine parameters (such as with a statistical-spread) has been evaluated. Effect of parameter variations on subsynchronous oscillations has been quantified using 3D-DFT plots and the oscillations have been identified as due to electrical self-excitation effects, rather than torsional interaction. Further, the generator no-load reactance and the rotor-side converter inner-loop controller gains have been identified as bearing maximum sensitivity to either damping or exacerbating the self-excited oscillations. A higher-order spectral analysis method based on modified Prony estimation has been successfully applied to the field records identifying dominant 9.79 Hz subsynchronous oscillations. Recommendations have been made for exploring countermeasures.
Resumo:
This honors thesis research project was the study and development of a compact separation device for the oil and gas industry involving a multiphase cylindrical screen filter. Cylindrical screens can be used for solids removal in multiphase flow in upstream oil and gas applications. This study focused on cylindrical wire-wrap screen test unit design and performance characterization to determine volumetric flow rate and pressure drop correlations. The project goals were met with research, test unit design, CFD modeling, calculations, and physical testing. The comprehensive testing will take place during the summer of 2013 and is planned to consist of building the designed flowloop and housing and using high capacity pumps to achieve higher flow rates. Multiphase testing will be performed with water, air, and sand particles and flow and pressure effects will be evaluated for solids filtering over time.
Resumo:
Recently, a lot of effort has been spent in the efficient computation of kriging predictors when observations are assimilated sequentially. In particular, kriging update formulae enabling significant computational savings were derived. Taking advantage of the previous kriging mean and variance computations helps avoiding a costly matrix inversion when adding one observation to the TeX already available ones. In addition to traditional update formulae taking into account a single new observation, Emery (2009) proposed formulae for the batch-sequential case, i.e. when TeX new observations are simultaneously assimilated. However, the kriging variance and covariance formulae given in Emery (2009) for the batch-sequential case are not correct. In this paper, we fix this issue and establish correct expressions for updated kriging variances and covariances when assimilating observations in parallel. An application in sequential conditional simulation finally shows that coupling update and residual substitution approaches may enable significant speed-ups.
Resumo:
In the late 19th century, F.A. FOREL led investigations of the Rhone River delta area of Lake Geneva that resulted in the dis- covery of a textbook example of a river-fed delta system containing impressive subaquatic channels. Well ahead of the marine counterparts, scientific observations and interpretations of water currents shaping the delta edifice for the first time documented how underflow currents carry cold, suspension-laden waters from the river mouth all the way to the deep basin. These early investigations of the Rhone delta laid the basis for follow-up studies in the 20th and 21th centuries. Sediment coring, water-column measurements, manned submersible diving, seismic reflection profiling and bathymetric sur- veying eventually provided a rich database to unravel the key erosional and depositional processes, further documenting the impact of human-induced changes in the catchment. With the merging of old and new scientific knowledge, today a comprehensive understanding prevails of how a delta changes through time, how its channels are formed, and what potential natural hazards may be related to its evolution. New and efficient bathymetric techniques, paired with novel coring operations, provided a time-series of morphologic evolution showing and quantifying the high dynamics of the delta/channel evolution in an unprecedented temporal and spatial reso- lution. Future investigations will continue to further quantify these dynamic processes and to link the evolution of the subaquatic domain with changes and processes in the catchment and with natural hazards. Its size, easy access, and large variety of states and processes will continue to make the Rhone delta area a perfect ‘laboratory’ in which general processes can be studied that could be upscaled or downscaled to other marine and lacustrine deltas.
Resumo:
The introduction and establishment of non-indigenous species through human activities often poses a major threat to natural biodiversity. In many parts of the world management efforts are therefore focused on their eradication. The environment of World Heritage sub-Antarctic Macquarie Island has been severely damaged by non-indigenous species including rabbits, rats and mice, introduced from the late AD 1800s. An extensive eradication programme is now underway which aims to remove all rabbits and rodents. To provide a long-term context for assessing the Island's pre-invasion state, invasion impacts, and to provide a baseline for monitoring its recovery, we undertook a palaeoecological study using proxies in a lake sediment core. Sedimentological and diatom analyses revealed an unproductive catchment and lake environment persisted for ca. 7100 years prior to the introduction of the invasive species. After ca. AD 1898, unprecedented and statistically significant environmental changes occurred. Lake sediment accumulation rates increased >100 times due to enhanced catchment inputs and within-lake production. Total carbon and total nitrogen contents of the sediments increased by a factor of four. The diatom flora became dominated by two previously rare species. The results strongly suggest a causal link between the anthropogenic introduction of rabbits and the changes identified in the lake sediments. This study provides an example of how palaeoecology may be used to determine baseline conditions prior to the introduction of non-indigenous species, quantify the timing and extent of changes, and help monitor the recovery of the ecosystem and natural biodiversity following successful non-indigenous species eradication programmes.
Resumo:
A sustainable water resources management depends on sound information about the impacts of climate change. This information is, however, not easily derived because natural runoff variability interferes with the climate change signal. This study presents a procedure that leads to robust estimates of magnitude and Time Of Emergence (TOE) of climate-induced hydrological change that also account for the natural variability contained in the time series. Firstly, natural variability of 189 mesoscale catchments in Switzerland is sampled for 10 ENSEMBLES scenarios for the control (1984–2005) and two scenario periods (near future: 2025–2046, far future: 2074–2095) applying a bootstrap procedure. Then, the sampling distributions of mean monthly runoff are tested for significant differences with the Wilcoxon-Mann–Whitney test and for effect size with Cliff’s delta d. Finally, the TOE of a climate change induced hydrological change is determined when at least eight out of the ten hydrological projections significantly differ from natural variability. The results show that the TOE occurs in the near future period except for high-elevated catchments in late summer. The significant hydrological projections in the near future correspond, however, to only minor runoff changes. In the far future, hydrological change is statistically significant and runoff changes are substantial. Temperature change is the most important factor determining hydrological change in this mountainous region. Therefore, hydrological change depends strongly on a catchment’s mean elevation. Considering that the hydrological changes are predicted to be robust in the near future highlights the importance of accounting for these changes in water resources planning.
Resumo:
Taxon-specific stable carbon isotope (δ13C) analysis of chitinous remains of invertebrates can provide valuable information about the carbon sources used by invertebrates living in specific habitats of lake ecosystems (for example, sediments, water column, or aquatic vegetation). This is complementary to δ13C of sedimentary organic matter (SOM), which provides an integrated signal of organic matter produced in a lake and its catchment, and of diagenetic processes within sediments. In a sediment record from Strandsjön (Sweden) covering the past circa 140 years, we analyzed SOM geochemistry (δ13C, C:Natomic, organic carbon content) and δ13C of chitinous invertebrate remains in order to examine whether taxon-specific δ13C records could be developed for different invertebrate groups and whether these analyses provide insights into past changes of organic carbon sources for lacustrine invertebrates available in benthic and planktonic compartments of the lake. Invertebrate taxa included benthic chironomids (Chironomus, Chironomini excluding Chironomus, Tanytarsini, and Tanypodinae), filter-feeders on suspended particulate organic matter (Daphnia, Plumatella and Cristatella mucedo), and Rhabdocoela. δ13C of chironomid remains indicated periodic availability of 13C-depleted carbon sources in the benthic environment of the lake as δ13C values of the different chironomid taxa fluctuated simultaneously between -34.7 and -30.5‰ (VPDB). Daphnia and Bryozoa showed parallel changes in their δ13C values which did not coincide with variations in δ13C of chironomids, though, and a 2-3‰ decrease since circa AD 1960. The decrease in δ13C of Daphnia and Bryozoa could indicate a decrease in phytoplankton δ13C as a result of lower lake productivity, which is in accordance with historical information about the lake that suggests a shift to less eutrophic conditions after AD 1960. In contrast, Rhabdocoela cocoons were characterized by relatively high δ13C values (-30.4 to -28.2‰) that did not show a strong temporal trend, which could be related to the predatory feeding mode and wide prey spectrum of this organism group. The taxon-specific δ13C analyses of invertebrate remains indicated that different carbon sources were available for the benthic chironomid larvae than for the filter-feeding Daphnia and bryozoans. Our results therefore demonstrate that taxon-specific analysis of δ13C of organic invertebrate remains can provide complementary information to measurements on bulk SOM and that δ13C of invertebrate remains may allow the reconstruction of past changes in carbon sources and their δ13C in different habitats of lake ecosystems.
Resumo:
It is important to check the fundamental assumption of most popular Item Response Theory models, unidimensionality. However, it is hard for educational and psychological tests to be strictly unidimensional. The tests studied in this paper are from a standardized high-stake testing program. They feature potential multidimensionality by presenting various item types and item sets. Confirmatory factor analyses with one-factor and bifactor models, and based on both linear structural equation modeling approach and nonlinear IRT approach were conducted. The competing models were compared and the implications of the bifactor model for checking essential unidimensionality were discussed.
Resumo:
Objectives. The purpose of this study was to elucidate behavioral determinants (prevailing attitudes and beliefs) of hand hygiene practices among undergraduate dental students in a dental school. ^ Methods. Statistical modeling using the Integrative Behavioral Model (IBM) prediction was utilized to develop a questionnaire for evaluating behavioral perceptions of hand hygiene practices by dental school students. Self-report questionnaires were given to second, third and fourth year undergraduate dental students. Models representing two distinct hand hygiene practices, termed "elective in-dental school hand hygiene practice" and "inherent in-dental school hand hygiene practice" were tested using linear regression analysis. ^ Results. 58 responses were received (24.5%); the sample mean age was 26.6 years old and females comprised 51%. In our models, elective in-dental school hand hygiene practice and inherent in-dental school hand hygiene practice, explained 40% and 28%, respectively, of the variance in behavioral intention. Translation of community hand hygiene practice to the dental school setting is the predominant driver of elective hand hygiene practice. Intended elective in-school hand hygiene practice is further significantly predicted by students' self-efficacy. Students' attitudes, peer pressure of other dental students and clinic administrators, and role modeling had minimal effects. Inherent hand hygiene intent was strongly predicted by students' beliefs in the benefits of the activity and, to a lesser extent, role modeling. Inherent and elective community behaviors were insignificant. ^ Conclusions. This study provided significant insights into dental student's hand hygiene behavior and can form the basis for an effective behavioral intervention program designed to improve hand hygiene compliance.^
Resumo:
At least two transient events of extreme global warming occurred superimposed on the long-term latest Paleocene and early Eocene warming trend in the Paleocene-Eocene thermal maximum (PETM) (or ETM1 ~55.5 Ma) and the Elmo (or ETM2 ?53.6 Ma). Other than warmth, the best known PETM is characterized by (1) significant injection of 13C-depleted carbon into the ocean-atmosphere system, (2) deep-sea carbonate dissolution, (3) strong biotic responses, and (4) perturbations of the hydrological cycle. Documentation of the other documented and suspected "hyperthermals" is, as yet, insufficient to assess whether they are similar in nature to the PETM. Here we present and discuss biomagnetostratigraphic data and geochemical records across two lower Eocene successions deposited on a continental margin of the western Tethys: the Farra and Possagno sections in the Venetian pre-Alps. We recognize four negative carbon isotope excursions within chron C24. Three of these shifts correlate to known or suspected hyperthermals: the PETM, the Eocene thermal maximum 2 (~53.6 Ma), and the informally named "X event" (~52.5 Ma). The fourth excursion lies within a reverse subchron and occurred between the latter two. In the Farra section, the X event is marked by a ~0.6 per mil negative carbon isotope excursion and carbonate dissolution. Furthermore, the event exhibits responses among calcareous nannofossils, planktic foraminifera, and dinoflagellates that are similar to, though less intense than, those observed across the PETM. Sedimentological and quantitative micropaleontological data from the Farra section also suggest increased weathering and runoff as well as sea surface eutrophication during this event.
Resumo:
Sequence boundary ages determined in shallow-water sediments obtained from ODP (Ocean Drilling Program) Leg 189 Site 1171 (South Tasman Rise) compare well with other stratigraphic records (New Jersey, United States, and northwestern Europe) and d18O increases from deep-sea records, indicating that significant (>10 m) eustatic changes occurred during the early to middle Eocene (51-42 Ma). Sequence boundaries were identified and dated using lithology, bio- and magnetostratigraphy, water-depth changes, CaCO3 content, and physical properties (e.g., photospectrometry). They are characterized by a sharp bioturbated surface, low CaCO3 content, and an abrupt increase in glauconite above the surface. Foraminiferal biofacies and planktonic/benthic foraminiferal ratios were used to estimate water-depth changes. Ages of six sequence boundaries (50.9, 49.2, 48.5-47.8, 47.1, 44.5, and 42.6 Ma) from Site 1171 correlate well to the timings of d18O increases and sequence boundaries identified from other Eocene studies. The synchronous nature of sequence boundary development from globally distal sites and d18O increases indicates a global control and that glacioeustasy was operating in this supposedly ice-free world. This is supported by previous modeling studies and atmospheric pCO2 estimates showing that the first time pCO2 levels decreased below a threshold that would support the development of an Antarctic ice sheet occurred at ca. 51 Ma. Estimates of sea-level amplitudes range from ~20 m for the early Eocene (51-49 Ma) and ~25 m to ~45 m for the middle Eocene (48-42 Ma) using constraints established for Oligocene d18O records.