981 resultados para Hydraulic lime mortars
Resumo:
The objective was to study the flow pattern in a plate heat exchanger (PHE) through residence time distribution (RTD) experiments. The tested PHE had flat plates and it was part of a laboratory scale pasteurization unit. Series flow and parallel flow configurations were tested with a variable number of passes and channels per pass. Owing to the small scale of the equipment and the short residence times, it was necessary to take into account the influence of the tracer detection unit on the RID data. Four theoretical RID models were adjusted: combined, series combined, generalized convection and axial dispersion. The combined model provided the best fit and it was useful to quantify the active and dead space volumes of the PHE and their dependence on its configuration. Results suggest that the axial dispersion model would present good results for a larger number of passes because of the turbulence associated with the changes of pass. This type of study can be useful to compare the hydraulic performance of different plates or to provide data for the evaluation of heat-induced changes that occur in the processing of heat-sensitive products. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
For the optimal design of plate heat exchangers (PHEs), an accurate thermal-hydraulic model that takes into account the effect of the flow arrangement on the heat load and pressure drop is necessary. In the present study, the effect of the flow arrangement on the pressure drop of a PHE is investigated. Thirty two different arrangements were experimentally tested using a laboratory scale PHE with flat plates. The experimental data was used for (a) determination of an empirical correlation for the effect of the number of passes and number of flow channels per pass on the pressure drop; (b) validation of a friction factor model through parameter estimation; and (c) comparison with the simulation results obtained with a CFD (computational fluid dynamics) model of the PHE. All three approaches resulted in a good agreement between experimental and predicted values of pressure drop. Moreover, the CFD model is used for evaluating the flow maldistribution in a PHE with two channels Per Pass. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The mechanical properties of Portland cement are closely related to the chemical composition of the clinker and particularly to the concentration of tricalcium silicate, C3S. In the industrial production process, the clinker must be rapidly quenched, to avoid its decomposition into dicalcium silicate and lime and also to avoid the transformation from higher temperature phases to lower temperature phases. This study investigated the kinetics of thermal decomposition of the C3S. Samples of laboratory-made C3S were thermally treated under specific conditions to determine the continuous cooling transformation (CCT) diagram of the material. The CCT diagram of the C3S showed decomposition rates with values that were much higher than the values traditionally accepted in the literature.
Resumo:
Ethylene/vinyl acetate (EVA) copolymer. as latex or redispersable powder, is added to mortars and concrete to improve the fracture toughness, impermeability and bond strength to various substrates. The physical and chemical interactions were already proved after one day of hydration but during the first hour just the physical interaction was identified and some evidences of a chemical interaction. The aim of this paper was to evaluate the chemical interaction between EVA and Portland cement during the first hours of hydration in the thermogravimetric analysis. The results confirmed that the EVA hydrolyses in pH alkaline and consumes calcium ions from the solution, forming an organic salt (calcium acetate). reducing the calcium hydroxide content. And, its interaction occurred in the first 15 min of hydration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aiming the use of the sewage sludge produced in one of the largest Brazilian wastewater treatment stations as a raw material for the ceramic industry, the sintering process of the ashes produced from its calcination was evaluated by heating microscopy thermal analysis (HMTA). From the microprocessed images, a method was developed to obtain HMTA dimensional change curves as a function of temperature, equivalent to those usually obtained from dilatometers or by thermomechanical analysis (TMA). The final product after sintering at 1050 degrees C, characterized by X-ray fluorescence spectrometry, scanning electron microscopy and X-ray dispersive energy, indicates the presence of a vitreous phase containing phosphorus, which explains the good sintering properties of the studied calcined sludge, as shown from its HMTA dimensional change curve.
Resumo:
This paper presents a rheological investigation of pure gypsum (PG) and a commercial gypsum-lime-filler plaster (CP) using the modified Vicat apparatus and squeeze flow method. The samples were tested at several different intervals after manual or mechanical mixing. The results confirmed squeeze flow to be more sensitive in determining fresh paste behavior than the modified Vicat apparatus. PG set faster when prepared in mechanical mixer than when manually mixed. Conversely, the CP composition presented longer setting when mixed mechanically. The study also included the analysis of two ready-to-use polymer-based products for leveling and rendering (drywall joint compound - DJC; acrylic putty - AP) measured by squeeze flow and compared to the commercial composition. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (I) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO(2) during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 A degrees C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO(2) assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions.
Resumo:
A method based on a specific power-law relationship between the hydraulic head and the Boltzmann variable was recently presented. We generalized this relationship to a range of powers and extended the solution to include the saturated zone. As a result, the new solution satisfies the Bruce and Klute equation exactly.
Resumo:
The growth of Eucalyptus stands varies several fold across sites, under the influence of resource availability, stand age and stand structure. We describe a series of related studies that aim to understand the mechanisms that drive this great range in stand growth rates. In a seven-year study in Hawaii of Eucalyptus saligna at a site that was not water limited, we showed that nutrient availability differences led to a two-fold difference in stand wood production. Increasing nutrient supply in mid-rotation raised productivity to the level attained in continuously fertilised plots. Fertility affected the age-related decline in wood and foliage production; production in the intensive fertility treatments declined more slowly than in the minimal fertility treatments. The decline in stem production was driven largely by a decline in canopy photosynthesis. Over time, the fraction of canopy photosynthesis partitioned to below-ground allocation increased, as did foliar respiration, further reducing wood production. The reason for the decline in photosynthesis was uncertain, but it was not caused by nutrient limitation, a decline in leaf area or in photosynthetic capacity, or by hydraulic limitation. Most of the increase in carbon stored from conversion of the sugarcane plantation to Eucalyptus plantation was in the above-ground woody biomass. Soil carbon showed no net change. This study and other studies on carbon allocation showed that resource availability changes the fraction of annual photosynthesis used below-ground and for wood production. High resources (nutrition or water) decrease the partitioning below-ground and increase partitioning to wood production. Annual foliage and wood respiration and foliage production as a fraction of annual photosynthesis was remarkably constant across a wide range of fertility treatments and forest age. In the Brazil Eucalyptus Productivity Project, stand structure was manipulated by planting clonal Eucalyptus all at once or in three groups at three-monthly intervals, producing a stand where trees did not segregate into dominants and one that had strong dominance. The uneven stand structure reduced production 10-15% throughout the rotation.
Resumo:
Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the vector of the bacteria that causes citrus greening and is considered one of the world`s most important citrus diseases. We examined how host, geographic region, and gender affect the thermal requirements of D. citri. The insects were reared in climatic chambers at constant temperatures of 18, 20, 22, 25, 28, 30, and 32 1 degrees C, 70 +/- 10% RH, and a 14 h photophase. Host plants for D. citri included orange (Citrus sinensis [Rutaceae]) varieties Pera and Natal, the rootstock, Rungpur lime (C. limonia [Rutaceae]) and the natural host, Orange jessamine (Murraya paniculata [Rutaceae]). To study the influence of geographic origin on thermal requirements, we studied D. citri populations from Piracicaba, SP (warmer region) and Itapetininga, SP (cooler region). The duration and survival of the development stages and the duration of the total development (egg-adult) did not differ significantly on the different hosts, but it did vary with temperature. Nymphs of D. citri created on the different hosts have the same thermal requirements. The thermal requirements for this species collected from the two climate regions were identical; males and females also had the same thermal requirements.
Resumo:
Citriculture normally uses high application volumes in pesticide solutions (of 2.000 to 5.000 L ha(-1)) to control pests and diseases that affect the crop, which generates an increase in operational costs. For this reason, diverse systems of application are being developed to reduce application volumes and improve the uniformity of pesticide deposition. The goal of this work was to evaluate the efficiency of two application systems of pesticides in citrus trees. One system used a prototype for terrestrial application with rotary disc atomizers that are widely used in agricultural aviation, and the other system used hollow cone tip hydraulics. For the treatment of the trees the insecticide Metidation was used at the dose of 180 gr per hectare. To study the droplet spectrum, water-sensitive papers were installed at different positions in the trees canopy, and for the study of insecticide deposition leaves of the treated plants were collected. The water-sensitive papers were collected and analyzed using a computerized image analysis system (e-Sprinkle, EMBRAPA, Sao Paulo, Brazil), and the leaves analyzed by the technique of gas chromatography. Pesticide deposition was similar in both application system, although the solution volume used by the application system equipped with rotary disc atomizers was one quarter of the volume used by the application system equipped with hydraulic tips, reducing considerably the cost of the phytosanitary treatments.
Resumo:
Leaching is disadvantageous, both for economical and environmental reasons since it may decrease the ecosystem productivity and may also contribute to the contamination of surface and ground water. The objective of this paper was to quantify the loss of nitrogen and sulfur by leaching, at the depth of 0.9 m, in an Ultisol in Sao Paulo State (Brazil) with high permeability, Cultivated with sugarcane during the agricultural cycle of crop plant. The following ions were evaluated: nitrite, nitrate, ammonium, and sulfate. Calcium, magnesium, potassium, and phosphate were also evaluated at the same depth. The sugarcane was planted and fertilized in the furrows with 120 log ha(-1) of N-urea. In order to find out the fate of N-fertilizer, four microplots with (15)N-enriched fertilizer were installed. Input and output of the considered ions at the depth of 0.9 m were quantified from the flux density of water and the concentration of the elements in the soil solution at this soil depth: tensiometers, soil water retention curve and soil solution extractors were used for this quantification. The internal drainage was 205 mm of water, with a total loss of 18 kg ha(-1) of N and 10 kg ha(-1) of S. The percentage of N in the soil solution derived from the fertilizer (%NSSDF) was 1.34, resulting in only 25 g ha(-1) of N fertilizer loss by leaching during all agricultural cycle. Under the experimental conditions of this crop plant, that is, high demand of nutrients and high incorporation of crop residues, the leached N represented 15% of applied N and S leaching were not considerable; the higher amount of leached N was native nitrogen and a minor quantity from N fertilizer; and the leached amount of Ca, Mg, K and P did not exceed the applications performed in the crop by lime and fertilization. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The model implicitly incorporates the effect of simultaneous pressure head and osmotic head on root water uptake, and does not require additional assumptions (additive or multiplicative) to derive the combined effect of water and salt stress. Simulation results showed that relative transpiration equals relative matric flux potential, which is defined as the matric flux potential calculated with an osmotic pressure head-dependent lower bound of integration, divided by the matric flux potential at the onset of limiting hydraulic conditions. In the falling rate phase, the osmotic head near the root surface was shown to increase in time due to decreasing root water extraction rates, causing a more gradual decline of relative transpiration than with water stress alone. Results furthermore show that osmotic stress effects on uptake depend on pressure head or water content, allowing a refinement of the approach in which fixed reduction factors based on the electrical conductivity of the saturated soil solution extract are used. One of the consequences is that osmotic stress is predicted to occur in situations not predicted by the saturation extract analysis approach. It is also shown that this way of combining salinity and water as stressors yields results that are different from a purely multiplicative approach. An analytical steady state solution is presented to calculate the solute content at the root surface, and compared with the outputs of the numerical model. Using the analytical solution, a method has been developed to estimate relative transpiration as a function of system parameters, which are often already used in vadose zone models: potential transpiration rate, root length density, minimum root surface pressure head, and soil theta-h and K-h functions.
Resumo:
On this paper, the results of an experimental study oil the hydraulic friction loss for small-diameter polyethylene pipes are reported. The experiment was carried out using a range of Reynolds number between 6000 to 72000, obtained by varying discharge at 20 degrees C water temperature, with internal pipe diameters of 10.0 mm, 12.9 mm, 16.1 mm, 17.4 mm and 19.7 mm. According to the analysis results and experimental conditions, the friction factor 0 of the Darcy-Weisbach equation call be estimated with c = 0.300 and m = 0.25. The Blasius equation (c = 0.316 and m = 0.25) gives an overestimate of friction loss, although this fact is non-restrictive for micro-irrigation system designs. The analysis shows that both the Blasius and the adjusted equation parameters allow for accurate friction factor estimates, characterized by low mean error (5.1%).
Resumo:
Time-domain reflectometry (TDR) is an important technique to obtain series of soil water content measurements in the field. Diode-segmented probes represent an improvement in TDR applicability, allowing measurements of the soil water content profile with a single probe. In this paper we explore an extensive soil water content dataset obtained by tensiometry and TDR from internal drainage experiments in two consecutive years in a tropical soil in Brazil. Comparisons between the variation patterns of the water content estimated by both methods exhibited evidences of deterioration of the TDR system during this two year period at field conditions. The results showed consistency in the variation pattern for the tensiometry data, whereas TDR estimates were inconsistent, with sensitivity decreasing over time. This suggests that difficulties may arise for the long-term use of this TDR system under tropical field conditions. (c) 2008 Elsevier B.V. All rights reserved.