931 resultados para Humoral and cellular rejection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bovine mastitis caused by Mycoplasma bovis is of great economic importance to the beef and dairy industry. Here we describe a new specific real-time PCR assay targeting the uvrC gene that was developed to directly detect M. bovis from milk and tissue samples without laborious DNA purification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptide hormones of the glucagon-like peptide (GLP) family play an increasing clinical role, as reported for GLP-1 in diabetes therapy and insulinoma diagnostics. GLP-2, despite its known trophic and anti-inflammatory intestinal actions translated into preliminary clinical studies using the GLP-2 analogue teduglutide for treatment of short bowel syndrome and Crohn's disease, remains poorly characterized in terms of expression of its receptor in tissues of interest. Therefore, the GLP-2 receptor expression was assessed in 237 tumor and 148 non-neoplastic tissue samples with in vitro receptor autoradiography. A GLP-2 receptor expression was present in 68% of gastrointestinal stromal tumors (GIST). Furthermore, GLP-2 receptors were identified in the intestinal myenteric plexus, with significant up-regulation in active Crohn's disease. The GLP-2 receptors in GIST may be used for clinical applications like in vivo targeting with radiolabelled GLP-2 analogues for imaging and therapy. Moreover, the over-expressed GLP-2 receptor in the myenteric plexus may represent the morphological correlate of the clinical target of teduglutide in Crohn's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient receptor potential channel (TRP) family comprises at least 28 genes in the human genome. These channels are widely expressed in many different tissues, including those of the cardiovascular system. The transient receptor potential channel melastatin 4 (TRPM4) is a Ca(2+)-activated non-specific cationic channel, which is impermeable to Ca(2+). TRPM4 is expressed in many cells of the cardiovascular system, such as cardiac cells of the conduction pathway and arterial and venous smooth muscle cells. This review article summarizes the recently described roles of TRPM4 in normal physiology and in various disease states. Genetic variants in the human gene TRPM4 have been linked to several cardiac conduction disorders. TRPM4 has also been proposed to play a crucial role in secondary hemorrhage following spinal cord injuries. Spontaneously hypertensive rats with cardiac hypertrophy were shown to over-express the cardiac TRPM4 channel. Recent studies suggest that TRPM4 plays an important role in cardiovascular physiology and disease, even if most of the molecular and cellular mechanisms have yet to be elucidated. We conclude this review article with a brief overview of the compounds that have been shown to either inhibit or activate TRPM4 under experimental conditions. Based on recent findings, the TRPM4 channel can be proposed as a future target for the pharmacological treatment of cardiovascular disorders, such as hypertension and cardiac arrhythmias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following development of the fetal bipotential gonad into a testis, male genital differentiation requires testicular androgens. Fetal Leydig cells produce testosterone that is converted to dihydrotestosterone in genital skin, resulting in labio-scrotal fusion. An alternative 'backdoor' pathway of dihydrotestosterone synthesis that bypasses testosterone has been described in marsupials, but its relevance to human biology has been uncertain. The classic and backdoor pathways share many enzymes, but a 3α-reductase, AKR1C2, is unique to the backdoor pathway. Human AKR1C2 mutations cause disordered sexual differentiation, lending weight to the idea that both pathways are required for normal human male genital development. These observations indicate that fetal dihydrotestosterone acts both as a hormone and as a paracrine factor, substantially revising the classic paradigm for fetal male sexual development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gypsies represent approximately 2.5% of the Czech population, but are considerably over-represented among the unemployed, prisoners, schooldropouts, neglected children, etc. Together with racist attitudes on the part of the majority, this causes strong inter-ethnic tension and obviouseconomic, moral and political problems. This research studied the way in which this situation is reflected in peer relations between Gypsy andmajority children in schools. Six samples of children (totalling 2974 children aged 7-15, of whom 15% were Gypsies) were studied through peernomination, teacher assessment and self-reporting. Gypsy/non-Gypsy and gender dichotomies were correlated with measures of aggression,victimisation and acceptance/rejection. The results showed that Gypsy children, both boys and girls, were more likely to nominate their Gypsy peers as aggressors than they nominatemajority children, implying that they tend to direct their rejection toward their own kind. The number of Gypsy children in a class was also animportant factor with Gypsies being more likely to be accepted and less likely to appear aggressive when they were only one or two in a class, thanin a class where there was a greater number of Gypsy pupils. When whole classes were taken as the unit of analysis, Gypsy children were seen asmore likely to behave aggressively in class by their Gypsy and non-Gypsy counterparts as well as by their teachers. At the same time they aremuch less likely to become victims of aggression than are non-Gypsy children, both boys and girls. Mr. Rican also found that the acceptance/rejection patterns of Gypsy children betray their unsatisfactory socialisation. Among their peers, Gypsyor non-Gypsy, they tend to prefer aggressors or children who teachers describe as showing little discipline or effort to succeed at school. Partialcorrelation to assess the influence of seniority on aggressiveness provided a warning that the recent lengthening of compulsory school attendance islikely to bring an increase in aggressiveness. He believes that Gypsy ethnic identity has lost many of its important positive aspects, making itsnegative aspects more prominent and more dangerous. He does however find some possible ways for teachers to reinforce the positive aspects ofGypsy children's identities in order to support their socialisation at schools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemokine processing by proteases is emerging as an important regulatory mechanism of leukocyte functions and possibly also of cancer progression. We screened a large panel of chemokines for degradation by cathepsins B and D, two proteases involved in tumor progression. Among the few substrates processed by both proteases, we focused on CCL20, the unique chemokine ligand of CCR6 that is expressed on immature dendritic cells and subtypes of memory lymphocytes. Analysis of the cleavage sites demonstrate that cathepsin B specifically cleaves off four C-terminally located amino acids and generates a CCL20(1-66) isoform with full functional activity. By contrast, cathepsin D totally inactivates the chemotactic potency of CCL20 by generating CCL20(1-55), CCL20(1-52), and a 12-aa C-terminal peptide CCL20(59-70). Proteolytic cleavage of CCL20 occurs also with chemokine bound to glycosaminoglycans. In addition, we characterized human melanoma cells as a novel CCL20 source and as cathepsin producers. CCL20 production was up-regulated by IL-1alpha and TNF-alpha in all cell lines tested, and in human metastatic melanoma cells. Whereas cathepsin D is secreted in the extracellular milieu, cathepsin B activity is confined to cytosol and cellular membranes. Our studies suggest that CCL20 processing in the extracellular environment of melanoma cells is exclusively mediated by cathepsin D. Thus, we propose a model where cathepsin D inactivates CCL20 and possibly prevents the establishment of an effective antitumoral immune response in melanomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of metastatic breast cancer with doxorubicin (Doxo) in combination with trastuzumab, an antibody targeting the ErbB2 receptor, results in an increased incidence of heart failure. Doxo therapy induces reactive oxygen species (ROS) and alterations of calcium homeostasis. Therefore, we hypothesized that neuregulin-1 beta (NRG), a ligand of the cardiac ErbB receptors, reduces Doxo-induced alterations of EC coupling by triggering antioxidant mechanisms. Adult rat ventricular cardiomyocytes (ARVM) were isolated and treated for 18-48 h. SERCA protein was analyzed by Western blot, EC coupling parameters by fura-2 and video edge detection, gene expression by RT-PCR, and ROS by DCF-fluorescence microscopy. At clinically relevant doses Doxo reduced cardiomyocytes contractility, SERCA protein and SR calcium content. NRG, similarly as the antioxidant N-acetylcystein (NAC), did not affect EC coupling alone, but protected against Doxo-induced damage. NRG and Doxo showed an opposite modulation of glutathione reductase gene expression. NRG, similarly as NAC, reduced peroxide- or Doxo-induced oxidative stress. Specific inhibitors showed, that the antioxidant action of NRG depended on signaling via the ErbB2 receptor and on the Akt- and not on the MAPK-pathway. Therefore, NRG attenuates Doxo-induced alterations of EC coupling and reduces oxidative stress in ARVM. Inhibition of the ErbB2/NRG signaling pathway by trastuzumab in patients concomitantly treated with Doxo might prevent beneficial effects of NRG in the myocardium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing discussion surrounding the issue of personalized approaches to drug prescription based on an individual's genetic makeup. This field of investigation has focused primarily on identifying genetic factors that influence drug metabolism and cellular disposition, thereby contributing to dose-dependent toxicities and/or variable drug efficacy. However, pharmacogenetic approaches have also proved valuable in predicting drug hypersensitivity reactions in selected patient populations, including HIV-infected patients receiving long-term antiretroviral therapy. In this instance, susceptibility has been strongly linked to genetic loci involved in antigen recognition and presentation to the immune system--most notably within the major histocompatibility complex (MHC) region--consistent with the notion that hypersensitivity reactions represent drug-specific immune responses that are largely dose independent. Here the authors describe their experiences with the development of pharmacogenetic approaches to hypersensitivity reactions associated with abacavir and nevirapine, two commonly prescribed antiretroviral drugs. It is demonstrated that prospective screening tests to identify and exclude individuals with a certain genetic makeup may be largely successful in decreasing or eliminating incidence of these adverse drug reactions in certain populations. This review also explores the broader implications of these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compared for seabream, Sparus aurata exposed to benzo(a)pyrene-B(a)P-, the response of molecular cytochrome P450 1A (CYP1A) and cellular histopathology biomarkers. Male gilthead seabream, Sparus aurata specimens were exposed for 20 days via water to a series of high B(a)P concentrations. CYP1A was assessed by measuring enzymatic activity (EROD) and CYP1A protein content, and cellular responses were evaluated by routine histopathological methods. In addition, biliary metabolites were measured in order to verify that B(a)P was absorbed and metabolised. Histological lesions, both in liver and gills, increased in parallel to B(a)P concentrations, with the majority of changes representing rather non-specific alterations. Hepatic EROD and CYP1A proteins data showed a concentration-dependent induction, while in the gills, EROD activity but not CYP1A proteins showed a non-monotonous dose response, with a maximum induction level at 200 microg B(a)P.L-1 and decreasing levels thereafter. The findings provide evidence that short-term, high dose exposure of fish can result in significant uptake and metabolism of the lipophilic B(a)P, and in pronounced pathological damage of absorptive epithelia and internal organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whether or not there are molecular differences, at the intra- and extracellular level, between aortic dilatation in patients with bicuspid (BAV) and those with a tricuspid aortic valve (TAV) has remained controversial for years. We have performed 2-dimensional gel electrophoresis and mass spectrometry coupled with dephosphorylation and phosphostaining experiments to reveal and define protein alterations and the high abundant structural phosphoproteins in BAV compared to TAV aortic aneurysm samples. 2-D gel patterns showed a high correlation in protein expression between BAV and TAV specimens (n=10). Few proteins showed significant differences, among those a phosphorylated form of heat shock protein (HSP) 27 with significantly lower expression in BAV compared to TAV aortic samples (p=0.02). The phosphoprotein tracing revealed four different phosphoproteins including Rho GDP dissociation inhibitor 1, calponin 3, myosin regulatory light chain 2 and four differentially phosphorylated forms of HSP27. Levels of total HSP27 and dually phosphorylated HSP27 (S78/S82) were investigated in an extended patient cohort (n=15) using ELISA. Total HSP27 was significantly lower in BAV compared to TAV patients (p=0.03), with no correlation in levels of phospho-HSP27 (S78/S82) (p=0.4). Western blots analysis showed a trend towards lower levels of phospho-HSP27 (S78) in BAV patients (p=0.07). Immunohistochemical analysis revealed that differences in HSP27 occur in the cytoplasma of VSMC's and not extracellularly. Alterations in HSP27 may give early evidence for intracellular differences in aortic aneurysm of patients with BAV and TAV. Whether HSP27 and the defined phosphoproteins have a specific role in BAV associated aortic dilatation remains to be elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) has widespread growth effects, and in some tissues proliferation is associated with the nuclear localization of EGF and epidermal growth factor receptor (EGFR). In the thyroid, EGF promotes growth but differs from thyrotropin (TSH) in inhibiting rather than stimulating functional parameters. We have therefore studied the occurrence and cellular distribution of EGF and EGFR in normal thyroid, in Graves' disease, where growth is mediated through the thyrotropin receptor (TSHR), and in a variety of human thyroid tumors. In the normal gland the staining was variable, but largely cytoplasmic, for both EGF and EGFR. In Graves' disease there was strong cytoplasmic staining for both EGF and EGFR, with frequent positive nuclei. Nuclear positivity for EGF and particularly for EGFR was also a feature of both follicular adenomas and follicular carcinomas. Interestingly, nuclear staining was almost absent in papillary carcinomas. These findings document for the first time the presence of nuclear EGF and EGFR in thyroid. Their predominant occurrence in tissues with increased growth (Graves' disease, follicular adenoma, and carcinoma) may indicate that nuclear EGF and EGFR play a role in growth regulation in these conditions. The absence of nuclear EGF and EGFR in papillary carcinomas would suggest that the role played by EGF in growth control differs between papillary carcinoma and follicular adenomas/carcinomas of the thyroid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mRNA stabilizing factor HuR is involved in the posttranscriptional regulation of many genes, including that coding for cyclooxygenase 2 (COX-2). Employing RNA interference technology and actinomycin D experiments, we demonstrate that in human mesangial cells (hMC) the amplification of cytokine-induced COX-2 by angiotensin II (AngII) occurs via a HuR-mediated increase of mRNA stability. Using COX-2 promoter constructs with different portions of the 3' untranslated region of COX-2, we found that the increase in COX-2 mRNA stability is attributable to a distal class III type of AU-rich element (ARE). Likewise, the RNA immunoprecipitation assay showed AngII-induced binding of HuR to this ARE. Using the RNA pulldown assay, we demonstrate that the AngII-caused HuR assembly with COX-2 mRNA is found in free and cytoskeleton-bound polysomes indicative of an active RNP complex. Mechanistically, the increased HuR binding to COX-2-ARE by AngII is accompanied by increased nucleocytoplasmic HuR shuttling and depends on protein kinase Cdelta (PKCdelta), which physically interacts with nuclear HuR, thereby promoting its phosphorylation. Mapping of phosphorylation sites identified serines 221 and 318 as critical target sites for PKCdelta-triggered HuR phosphorylation and AngII-induced HuR export to the cytoplasm. Posttranslational modification of HuR by PKCdelta represents an important novel mode of HuR activation implied in renal COX-2 regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 microg ml(-1)). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p<0.05) in the fluorescent intensity in a cell-free environment was found with organic QDs, NH2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: To describe the effects of arginine vasopressin other than its vasoconstrictive and antidiuretic potential in vasodilatory shock. RECENT FINDINGS: Arginine vasopressin influences substrate metabolism by stimulation of hepatic glucose release, gluconeogenesis, ureogenesis and fatty acid esterification. Although arginine vasopressin is a secretagogue of different hormones, only prolactin increases during arginine vasopressin therapy. Plasmatic and cellular coagulation are affected by arginine vasopressin, resulting in thrombocyte aggregation. Therefore, platelet count typically decreases following arginine vasopressin infusion in critically ill patients. In addition, arginine vasopressin reduces bile flow and may increase bilirubin concentrations. Despite its potential to decrease serum sodium, no change in electrolytes was observed in critically ill patients receiving arginine vasopressin. Although arginine vasopressin is an endogenous antipyretic, body temperature is not decreased by central venous arginine vasopressin infusion. In addition, arginine vasopressin modulates immune function through V1 receptors. Compared with norepinephrine, arginine vasopressin may have protective effects on endothelial function. Net arginine vasopressin effects on gastrointestinal motility seem to be inhibitory and are dose dependent. SUMMARY: Except for its antidiuretic and vasoconstrictive actions, the effects of arginine vasopressin in patients with vasodilatory shock have so far only been partially examined. Potential influences of arginine vasopressin on metabolism and immune, liver and mitochondrial function remain to be assessed in future studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.