921 resultados para Hospital medical materials
Resumo:
The dramatic impact that vascular diseases have on human life quality and expectancy nowadays is the reason why both medical and scientific communities put great effort in discovering new and effective ways to fight vascular pathologies. Among the many different treatments, endovascular surgery is a minimally-invasive technique that makes use of X-ray fluoroscopy to obtain real-time images of the patient during interventions. In this context radiopaque biomaterials, i.e. materials able to absorb X-ray radiation, play a fundamental role as they are employed both to enhance visibility of devices during interventions and to protect medical staff and patients from X-ray radiations. Organic-inorganic hybrids are materials that combine characteristics of organic polymers with those of inorganic metal oxides. These materials can be synthesized via the sol-gel process and can be easily applied as thin coatings on different kinds of substrates. Good radiopacity of organic-inorganic hybrids has been recently reported suggesting that these materials might find applications in medical fields where X-ray absorption and visibility is required. The present PhD thesis aimed at developing and characterizing new radiopaque organic-inorganic hybrid materials that can find application in the vascular surgery field as coatings for the improvement of medical devices traceability as well as for the production of X-ray shielding objects and garments. Novel organic-inorganic hybrids based on different polyesters (poly-lactic acid and poly-ε-caprolactone) and polycarbonate (poly-trimethylene carbonate) as the polymeric phase and on titanium oxide as the inorganic phase were synthesized. Study of the phase interactions in these materials allowed to demonstrate that Class II hybrids (where covalent bonds exists between the two phases) can be obtained starting from any kind of polyester or polycarbonate, without the need of polymer pre-functionalization, thanks to the occurrence of transesterification reactions operated by inorganic molecules on ester and carbonate moieties. Polyester based hybrids were successfully coated via dip coating on different kinds of textiles. Coated textiles showed improved radiopacity with respect to the plain fabric while remaining soft to the touch. The hybrid was able to coat single fibers of the yarn rather than coating the yarn as a whole. Openings between yarns were maintained and therefore fabric breathability was preserved. Such coatings are promising for the production of light-weight garments for X-ray protection of medical staff during interventional fluoroscopy, which will help preventing pathologies that stem from chronic X-ray exposure. A means to increase the protection capacity of hybrid-coated fabrics was also investigated and implemented in this thesis. By synthesizing the hybrid in the presence of a suspension of radiopaque tantalum nanoparticles, PDMS-titania hybrid materials with tunable radiopacity were developed and were successfully applied as coatings. A solution for enhancing medical device radiopacity was also successfully investigated. High metal radiopacity was associated with good mechanical and protective properties of organic-inorganic hybrids in the form of a double-layer coating. Tantalum was employed as the constituent of the first layer deposited on sample substrates by means of a sputtering technique. The second layer was composed of a hybrid whose constituents are well-known biocompatible organic and inorganic components, such as the two polymers PCL and PDMS, and titanium oxide, respectively. The metallic layer conferred to the substrate good X-ray visibility. A correlation between radiopacity and coating thickness derived during this study allows to tailor radiopacity simply by controlling the metal layer sputtering deposition time. The applied metal deposition technique also permits easy shaping of the radiopaque layer, allowing production of radiopaque markers for medical devices that can be unambiguously identified by surgeons during implantation and in subsequent radiological investigations. Synthesized PCL-titania and PDMS-titania hybrids strongly adhered to substrates and show good biocompatibility as highlighted by cytotoxicity tests. The PDMS-titania hybrid coating was also characterized by high flexibility that allows it to stand large substrate deformations without detaching nor cracking, thus being suitable for application on flexible medical devices.
Resumo:
Life is full of uncertainties. Legal rules should have a clear intention, motivation and purpose in order to diminish daily uncertainties. However, practice shows that their consequences are complex and hard to predict. For instance, tort law has the general objectives of deterring future negligent behavior and compensating the victims of someone else's negligence. Achieving these goals are particularly difficult in medical malpractice cases. To start with, when patients search for medical care they are typically sick in the first place. In case harm materializes during the treatment, it might be very hard to assess if it was due to substandard medical care or to the patient's poor health conditions. Moreover, the practice of medicine has a positive externality on the society, meaning that the design of legal rules is crucial: for instance, it should not result in physicians avoiding practicing their activity just because they are afraid of being sued even when they acted according to the standard level of care. The empirical literature on medical malpractice has been developing substantially in the past two decades, with the American case being the most studied one. Evidence from civil law tradition countries is more difficult to find. The aim of this thesis is to contribute to the empirical literature on medical malpractice, using two civil law countries as a case-study: Spain and Italy. The goal of this thesis is to investigate, in the first place, some of the consequences of having two separate sub-systems (administrative and civil) coexisting within the same legal system, which is common in civil law tradition countries with a public national health system (such as Spain, France and Portugal). When this holds, different procedures might apply depending on the type of hospital where the injury took place (essentially whether it is a public hospital or a private hospital). Therefore, a patient injured in a public hospital should file a claim in administrative courts while a patient suffering an identical medical accident should file a claim in civil courts. A natural question that the reader might pose is why should both administrative and civil courts decide medical malpractice cases? Moreover, can this specialization of courts influence how judges decide medical malpractice cases? In the past few years, there was a general concern with patient safety, which is currently on the agenda of several national governments. Some initiatives have been taken at the international level, with the aim of preventing harm to patients during treatment and care. A negligently injured patient might present a claim against the health care provider with the aim of being compensated for the economic loss and for pain and suffering. In several European countries, health care is mainly provided by a public national health system, which means that if a patient harmed in a public hospital succeeds in a claim against the hospital, public expenditures increase because the State takes part in the litigation process. This poses a problem in a context of increasing national health expenditures and public debt. In Italy, with the aim of increasing patient safety, some regions implemented a monitoring system on medical malpractice claims. However, if properly implemented, this reform shall also allow for a reduction in medical malpractice insurance costs. This thesis is organized as follows. Chapter 1 provides a review of the empirical literature on medical malpractice, where studies on outcomes and merit of claims, costs and defensive medicine are presented. Chapter 2 presents an empirical analysis of medical malpractice claims arriving to the Spanish Supreme Court. The focus is on reversal rates for civil and administrative decisions. Administrative decisions appealed by the plaintiff have the highest reversal rates. The results show a bias in lower administrative courts, which tend to focus on the State side. We provide a detailed explanation for these results, which can rely on the organization of administrative judges career. Chapter 3 assesses predictors of compensation in medical malpractice cases appealed to the Spanish Supreme Court and investigates the amount of damages attributed to patients. The results show horizontal equity between administrative and civil decisions (controlling for observable case characteristics) and vertical inequity (patients suffering more severe injuries tend to receive higher payouts). In order to execute these analyses, a database of medical malpractice decisions appealed to the Administrative and Civil Chambers of the Spanish Supreme Court from 2006 until 2009 (designated by the Spanish Supreme Court Medical Malpractice Dataset (SSCMMD)) has been created. A description of how the SSCMMD was built and of the Spanish legal system is presented as well. Chapter 4 includes an empirical investigation of the effect of a monitoring system for medical malpractice claims on insurance premiums. In Italy, some regions adopted this policy in different years, while others did not. The study uses data on insurance premiums from Italian public hospitals for the years 2001-2008. This is a significant difference as most of the studies use the insurance company as unit of analysis. Although insurance premiums have risen from 2001 to 2008, the increase was lower for regions adopting a monitoring system for medical claims. Possible implications of this system are also provided. Finally, Chapter 5 discusses the main findings, describes possible future research and concludes.
Resumo:
Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.
Resumo:
This PhD work was aimed to design, develop, and characterize gelatin-based scaffolds, for the repair of defects in the muscle-skeletal system. Gelatin is a biopolymer widely used for pharmaceutical and medical applications, thanks to its biodegradability and biocompatibility. It is obtained from collagen via thermal denaturation or chemical-physical degradation. Despite its high potential as biomaterial, gelatin exhibits poor mechanical properties and a low resistance in aqueous environment. Crosslinking treatment and enrichment with reinforcement materials are thus required for biomedical applications. In this work, gelatin based scaffolds were prepared following three different strategies: films were prepared through the solvent casting method, electrospinning technique was applied for the preparation of porous mats, and 3D porous scaffolds were prepared through freeze-drying. The results obtained on films put into evidence the influence of pH, crosslinking and reinforcement with montmorillonite (MMT), on the structure, stability and mechanical properties of gelatin and MMT/gelatin composites. The information acquired on the effect of crosslinking in different conditions was utilized to optimize the preparation procedure of electrospun and freeze-dried scaffolds. A successful method was developed to prepare gelatin nanofibrous scaffolds electrospun from acetic acid/water solution and stabilized with a non-toxic crosslinking agent, genipin, able to preserve their original morphology after exposure to water. Moreover, the co-electrospinning technique was used to prepare nanofibrous scaffolds at variable content of gelatin and polylactic acid. Preliminary in vitro tests indicated that the scaffolds are suitable for cartilage tissue engineering, and that their potential applications can be extended to cartilage-bone interface tissue engineering. Finally, 3D porous gelatin scaffolds, enriched with calcium phosphate, were prepared with the freeze-drying method. The results indicated that the crystallinity of the inorganic phase influences porosity, interconnectivity and mechanical properties. Preliminary in vitro tests show good osteoblast response in terms of proliferation and adhesion on all the scaffolds.
Resumo:
Until today, autogenic bone grafts from various donor regions represent the gold standard in the field of bone reconstruction, providing both osteoinductive and osteoconductive characteristics. However, due to low availability and a disequilibrium between supply and demand, the risk of disease transfer and morbidity, usually associated with autogeneic bone grafts, the development of biomimic materials with structural and chemical properties similar to those of natural bone have been extensively studied. So far,rnonly a few synthetic materials, so far, have met these criteria, displaying properties that allow an optimal bone reconstitution. Biosilica is formed enzymatically under physiological-relevant conditions (temperature and pH) via silicatein (silica protein), an enzyme that was isolated from siliceous sponges, cloned, and prepared in a recombinant way, retaining its catalytic activity. It is biocompatible, has some unique mechanical characteristics, and comprises significant osteoinductive activity.rnTo explore the application of biosilica in the fields of regenerative medicine,rnsilicatein was encapsulated, together with its substrate sodium metasilicate, into poly(D,L-lactide)/polyvinylpyrrolidone(PVP)-based microspheres, using w/o/wrnmethodology with solvent casting and termed Poly(D,L-lactide)-silicatein silicacontaining-microspheres [PLASSM]. Both silicatein encapsulation efficiency (40%) and catalytic activity retention upon polymer encapsulation were enhanced by addition of an essential pre-emulsifying step using PVP. Furthermore, the metabolic stability, cytoxicity as well as the kinetics of silicatein release from the PLASSM were studied under biomimetic conditions, using simulated body fluid. As a solid support for PLASSM, a polyvinylpyrrolidone/starch/Na2HPO4-based matrix (termed plastic-like filler matrix containing silicic acid [PMSA]) was developed and its chemical and physical properties determined. Moreover, due to the non-toxicity and bioinactivity of the PMSA, it is suggested that PMSA acts as osteoconductive material. Both components, PLASSM and PMSA, when added together, form arnbifunctional 2-component implant material, that is (i)non-toxic(biocompatible), (ii)moldable, (iii) self-hardening at a controlled and clinically suitable rate to allows a tight insertion into any bone defect (iv) biodegradable, (v)forms a porous material upon exposure to body biomimetic conditions, and (vi)displays both osteoinductive (silicatein)and osteoconductive (PMSA) properties.rnPreliminary in vivo experiments were carried out with rabbit femurs, by creatingrnartificial bone defects that were subsequently treated with the bifunctional 2-component implant material. After 9 weeks of implantation, both computed tomography (CT) and morphological analyses showed complete resorption of the implanted material, concurrent with complete bone regeneration. The given data can be considered as a significant contribution to the successful introduction of biosilica-based implants into the field of bone substitution surgery.
Resumo:
Il progetto Eye-Trauma si colloca all'interno dello sviluppo di un simulatore chirurgico per traumi alla zona oculare, sviluppato in collaborazione con Simulation Group in Boston, Harvard Medical School e Massachusetts General Hospital. Il simulatore presenta un busto in silicone fornito di moduli intercambiabili della zona oculare, per simulare diversi tipi di trauma. L'utilizzatore è chiamato ad eseguire la procedura medica di saturazione tramite degli strumenti chirurgici su cui sono installati dei sensori di forza e di apertura. I dati collezionati vengono utilizzati all'interno del software per il riconoscimento dei gesti e il controllo real-time della performance. L'algoritmo di gesture recognition, da me sviluppato, si basa sul concetto di macchine a stati; la transizione tra gli stati avviene in base agli eventi rilevati dal simulatore.
Resumo:
In this work, the well-known MC code FLUKA was used to simulate the GE PETrace cyclotron (16.5 MeV) installed at “S. Orsola-Malpighi” University Hospital (Bologna, IT) and routinely used in the production of positron emitting radionuclides. Simulations yielded estimates of various quantities of interest, including: the effective dose distribution around the equipment; the effective number of neutron produced per incident proton and their spectral distribution; the activation of the structure of the cyclotron and the vault walls; the activation of the ambient air, in particular the production of 41Ar, the assessment of the saturation yield of radionuclides used in nuclear medicine. The simulations were validated against experimental measurements in terms of physical and transport parameters to be used at the energy range of interest in the medical field. The validated model was also extensively used in several practical applications uncluding the direct cyclotron production of non-standard radionuclides such as 99mTc, the production of medical radionuclides at TRIUMF (Vancouver, CA) TR13 cyclotron (13 MeV), the complete design of the new PET facility of “Sacro Cuore – Don Calabria” Hospital (Negrar, IT), including the ACSI TR19 (19 MeV) cyclotron, the dose field around the energy selection system (degrader) of a proton therapy cyclotron, the design of plug-doors for a new cyclotron facility, in which a 70 MeV cyclotron will be installed, and the partial decommissioning of a PET facility, including the replacement of a Scanditronix MC17 cyclotron with a new TR19 cyclotron.
Resumo:
Chromosomal and genetic syndromes are frequently associated with dental and cranio-facial alterations. The aim of our study is to identify and describe the dental and craniofacial alterations typical of six genetic and chromosomal syndromes examined. Materials and Methods- A dental visit was performed to 195 patients referred from Sant’Orsola Hospital of Bologna, University of Bologna, to Service of Special Need Dentistry, Dental Clinic, Department of Biomedical and Neuromotor Science, University of Bologna. The patients recruited were 137 females and 58 males, in an age range of 3-49 years (mean age of 13.8±7.4). The total sample consisted of subjects affected with Down Syndrome (n=133), Familiar Hypophosphatemic Ricket (n=10), Muscular Dystrophies (n=12), Noonan Syndrome (n=13), Turner Syndrome (n=17), Williams Syndrome(n=10). A questionnaire regarding detailed medical and dental history, oral health and dietary habits, was filled by parents/caregivers, or patients themselves when possible. The intra-oral and extra-oral examination valued the presence of facial asymmetries, oral habits, dental and skeletal malocclusions, dental formula, dental anomalies, Plaque Index (Silness&LÖe Index), caries prevalence (dmft/DMFT index), gingivitis and periodontal disease, and mucosal lesions. Radiographic examinations (Intraoral radiographies, Orthopanoramic, Skull teleradiography) were executed according to patient’s age and treatment planning. A review of literature about each syndrome and its dental and cranio-facial characteristics and about caries, hygiene status and malocclusion prevalence on syndromic and non-syndromic population was performed. Results - The data of all the patients were collected in the “Data Collection Tables” created for each syndrome. General anamnesis information, oral hygiene habits and dmft/DMFT, PI, malocclusion prevalence were calculated and compared to syndromic and non-syndromic population results found in literature. Discussions and conclusions - Guidelines of Special Care dentistry were indicated for each syndrome, in relation to each syndrome features and individual patient characteristics.
Resumo:
Conventional inorganic materials for x-ray radiation sensors suffer from several drawbacks, including their inability to cover large curved areas, me- chanical sti ffness, lack of tissue-equivalence and toxicity. Semiconducting organic polymers represent an alternative and have been employed as di- rect photoconversion material in organic diodes. In contrast to inorganic detector materials, polymers allow low-cost and large area fabrication by sol- vent based methods. In addition their processing is compliant with fexible low-temperature substrates. Flexible and large-area detectors are needed for dosimetry in medical radiotherapy and security applications. The objective of my thesis is to achieve optimized organic polymer diodes for fexible, di- rect x-ray detectors. To this end polymer diodes based on two different semi- conducting polymers, polyvinylcarbazole (PVK) and poly(9,9-dioctyluorene) (PFO) have been fabricated. The diodes show state-of-the-art rectifying be- haviour and hole transport mobilities comparable to reference materials. In order to improve the X-ray stopping power, high-Z nanoparticle Bi2O3 or WO3 where added to realize a polymer-nanoparticle composite with opti- mized properities. X-ray detector characterization resulted in sensitivties of up to 14 uC/Gy/cm2 for PVK when diodes were operated in reverse. Addition of nanoparticles could further improve the performance and a maximum sensitivy of 19 uC/Gy/cm2 was obtained for the PFO diodes. Compared to the pure PFO diode this corresponds to a five-fold increase and thus highlights the potentiality of nanoparticles for polymer detector design. In- terestingly the pure polymer diodes showed an order of magnitude increase in sensitivity when operated in forward regime. The increase was attributed to a different detection mechanism based on the modulation of the diodes conductivity.
Resumo:
In type 1 diabetes (T1DM), a good metabolic control is important to reduce and/or postpone complications. Guidelines regarding how to achieve this goal are published by the American Diabetes Association (ADA) and the International Society of Paediatric and Adolescence Diabetes (ISPAD). The aims of this study were to determine the current level of metabolic control in T1DM patients on different treatment regimens, followed at the diabetes outpatient unit of the University Children's Hospital Bern, Switzerland, and to compare it with both the reported data from ten years ago (1998) and with the current guidelines of the ADA and ISPAD.
Resumo:
Since the seventies, the practice of drug smuggling in the form of body packing has increased in the Western world. The goal of our study was to present an algorithm for the safe management of intracorporal drug transport based on clinical experience and current evidence. The retrospective study, conducted over the past four years in our hospital prison, analyzes and discusses the diagnostic and therapeutic concepts. Thirty-four patients hospitalized 37 times in a 48-month period were included. In 28 patients drug packages were identified. Only two patients suffered from serious complications. The study demonstrates that following a specifically designed management algorithm based on clinical experience and principles of evidence-based medicine can optimize risk management, improve quality assurance and patient safety.
Resumo:
Suture materials in orthopaedic surgery are used for closure of wounds, repair of fascia, muscles, tendons, ligaments, joint capsules, and cerclage or tension band of certain fractures. The purpose of this study was to compare the biomechanical properties of eleven commonly used sutures in orthopaedic surgery. Three types of braided non-absorbable and one type of braided absorbable suture material with different calibers (n=77) underwent biomechanical testing for maximum load to failure, strain, and stiffness. All samples were tied by one surgeon with a single SMC (Seoul Medical Center) knot and three square knots. The maximum load to failure and strain were highest for #5 FiberWire and lowest for #0 Ethibond Excel (p<0.001). The stiffness was highest for #5 FiberWire and lowest for #2-0 Vicryl (p<0.001). In all samples, the failure of the suture material occurred at the knot There was no slippage of the knot in any of the samples tested. This data will assist the orthopaedic surgeon in selection and application of appropriate suture materials and calibers to specific tasks.
Resumo:
Background Patients often establish initial contact with healthcare institutions by telephone. During this process they are frequently medically triaged. Purpose To investigate the safety of computer-assisted telephone triage for walk-in patients with non-life-threatening medical conditions at an emergency unit of a Swiss university hospital. Methods This prospective surveillance study compared the urgency assessments of three different types of personnel (call centre nurses, hospital physicians, primary care physicians) who were involved in the patients' care process. Based on the urgency recommendations of the hospital and primary care physicians, cases which could potentially have resulted in an avoidable hazardous situation (AHS) were identified. Subsequently, the records of patients with a potential AHS were assessed for risk to health or life by an expert panel. Results 208 patients were enrolled in the study, of whom 153 were assessed by all three types of personnel. Congruence between the three assessments was low. The weighted κ values were 0.115 (95% CI 0.038 to 0.192) (hospital physicians vs call centre), 0.159 (95% CI 0.073 to 0.242) (primary care physicians vs call centre) and 0.377 (95% CI 0.279 to 0.480) (hospital vs primary care physicians). Seven of 153 cases (4.57%; 95% CI 1.85% to 9.20%) were classified as a potentially AHS. A risk to health or life was adjudged in one case (0.65%; 95% CI 0.02% to 3.58%). Conclusion Medical telephone counselling is a demanding task requiring competent specialists with dedicated training in communication supported by suitable computer technology. Provided these conditions are in place, computer-assisted telephone triage can be considered to be a safe method of assessing the potential clinical risks of patients' medical conditions.
Resumo:
PRINCIPALS: Most people enjoy sexual intercourse without complications, but a significant, if small, number need to seek emergency medical help for related health problems. The true incidence of these problems is not known. We therefore assessed all admissions to our emergency department (ED) in direct relation to sexual intercourse. METHODS: All data were collected prospectively and entered into the ED's centralised electronic patient record database (Qualicare, Switzerland) and retrospectively analysed. The database was scanned for the standardised key words: 'sexual intercourse' (German 'Geschlechtsverkehr') or 'coitus' (German 'Koitus'). RESULTS: A total of 445 patients were available for further evaluation; 308 (69.0%) were male, 137 (31.0%) were female. The median age was 32 years (range 16-71) for male subjects and 30 years (range 16-70) for female subjects. Two men had cardiovascular emergencies. 46 (10.3%) of our patients suffered from trauma. Neurological emergencies occurred in 55 (12.4%) patients: the most frequent were headaches in 27 (49.0%), followed by subarachnoid haemorrhage (12, 22.0%) and transient global amnesia (11, 20.0%). 154 (97.0%) of the patients presenting with presumed infection actually had infections of the urogenital tract. The most common infection was urethritis (64, 41.0%), followed by cystitis (21, 13.0%) and epididymitis (19, 12.0%). A sexually transmitted disease (STD) was diagnosed in 43 (16.0%) of all patients presenting with a presumed infection. 118 (43.0%) of the patients with a possible infection requested testing for an STD because of unsafe sexual activity without underlying symptoms. CONCLUSIONS: Sexual activity is mechanically dangerous, potentially infectious and stressful for the cardiovascular system. Because information on ED presentation related to sexual intercourse is scarce, more efforts should be undertaken to document all such complications to improve treatment and preventative strategies.