763 resultados para High power fiber laser


Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal overlapping of ultra-short and focussed laser pulses is a particularly challenging task, as this timescale lies orders of magnitude below the typical range of fast electronic devices. Here we present an optical technique that allows for the measurement of the temporal delay between two focussed and ultra-short laser pulses. This method is virtually applicable to any focussing geometry and relative intensity of the two lasers. Experimental implementation of this technique provides excellent quantitative agreement with theoretical expectations. The proposed technique will prove highly beneficial for high-power multiple-beam laser experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ∼2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

State-of-the-art high power lasers can exert immense pressure on thin foils which can be used to accelerate energetic ion beams efficiently at the laser plasma interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beta-type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus and is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapor deposition and chemical vapor deposition are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W continuous wave (CW) fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using x-ray diffractometry, optical microscopy, three-dimensional surface profile and contact angle measurements, and nanoindentation test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High power lasers have proven being capable to produce high energy γ-rays, charged particles and neutrons, and to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities: 10 PW and 10^23 W/cm^2. While the development of laser based radiation sources is the main focus at the ELI-Beamlines pillar of ELI, at ELI-NP the studies that will benefit from High Power Laser System pulses will focus on Laser Driven Nuclear Physics (this TDR, acronym LDNP, associated to the E1 experimental area), High Field Physics and QED (associated to the E6 area) and fundamental research opened by the unique combination of the two 10 PW laser pulses with a gamma beam provided by the Gamma Beam System (associated to E7 area). The scientific case of the LDNP TDR encompasses studies of laser induced nuclear reactions, aiming for a better understanding of nuclear properties, of nuclear reaction rates in laser-plasmas, as well as on the development of radiation source characterization methods based on nuclear techniques. As an example of proposed studies: the promise of achieving solid-state density bunches of (very) heavy ions accelerated to about 10 MeV/nucleon through the RPA mechanism will be exploited to produce highly astrophysical relevant neutron rich nuclei around the N~126 waiting point, using the sequential fission-fusion scheme, complementary to any other existing or planned method of producing radioactive nuclei.

The studies will be implemented predominantly in the E1 area of ELI-NP. However, many of them can be, in a first stage, performed in the E5 and/or E4 areas, where higher repetition laser pulses are available, while the harsh X-ray and electromagnetic pulse (EMP) environments are less damaging compared to E1.

A number of options are discussed through the document, having an important impact on the budget and needed resources. Depending on the TDR review and subsequent project decisions, they may be taken into account for space reservation, while their detailed design and implementation will be postponed.

The present TDR is the result of contributions from several institutions engaged in nuclear physics and high power laser research. A significant part of the proposed equipment can be designed, and afterwards can be built, only in close collaboration with (or subcontracting to) some of these institutions. A Memorandum of Understanding (MOU) is currently under preparation with each of these key partners as well as with others that are interested to participate in the design or in the future experimental program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La technique du laser femtoseconde (fs) a été précédemment utilisée pour la production de nanoparticules d'or dans un environnement aqueux biologiquement compatible. Au cours de ce travail de maîtrise, cette méthode a été investiguée en vue d'une application pour la fabrication de nanocristaux de médicament en utilisant le paclitaxel comme modèle. Deux procédés distincts de cette technologie à savoir l'ablation et la fragmentation ont été étudiés. L'influence de la puissance du laser, de point de focalisation, et de la durée du traitement sur la distribution de taille des particules obtenues ainsi que leur intégrité chimique a été évaluée. Les paramètres ont ainsi été optimisés pour la fabrication des nanoparticules. L’évaluation morphologique et chimique a été réalisée par microscopie électronique et spectroscopie infrarouge respectivement. L'état cristallin des nanoparticules de paclitaxel a été caractérisé par calorimétrie differentielle et diffraction des rayons X. L'optimisation du procédé de production de nanoparticules par laser fs a permis d'obtenir des nanocristaux de taille moyenne (400 nm, polydispersité ≤ 0,3). Cependant une dégradation non négligeable a été observée. La cristallinité du médicament a été maintenue durant la procédure de réduction de taille, mais le paclitaxel anhydre a été transformé en une forme hydratée. Les résultats de cette étude suggèrent que le laser fs peut générer des nanocristaux de principe actif. Cependant cette technique peut se révéler problématique pour des médicaments sensibles à la dégradation. Grâce à sa facilité d'utilisation et la possibilité de travailler avec des quantités restreintes de produit, le laser fs pourrait représenter une alternative valable pour la production de nanoparticules de médicaments peu solubles lors des phases initiales de développement préclinique. Mots-clés: paclitaxel, nanocristaux, laser femtoseconde, ablation, fragmentation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical fiber based laser induced fluorescence (LIF) measurements were carried out using Rhodamine B to analyze two different species of bacteria , a Gram-positive bacteria namely Bacillus .cmithii , and fibrin alginolvticus, a Gram-' negative bacteria . The fiber sensor was clearly able to distinguish between the two species of bacteria . Quenching effect of the dye Rhodamine B by Bacillus smitltii was observed . The effect of dye on the samples was also studied in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is entitled “OPTICAL EMISSION DIAGNOSTICS OF LASER PRODUCED PLASMA FROM GRAPHITE AND YBa2Cu3O7. The work presented in this thesis covers the experimental results on the plasma produced with moderately high power laser with irradiance range in between 10 GW cm 2 to 100 GW cm -2. The characterization of laser produced plasma from solid targets viz. graphite and high temperature superconducting material like YBa2Cu3O7 have been carried out. The fundamental frequency from a Q - switched Nd: YAG laser with 9 ns pulse duration is used for the present studies. Various optical emission emission diagnostic techniques were employed for the the characterization of the LPP which include emission spectroscopy, time resolved studies, line broadening method etc. In order to understand the physical nature of the LPP like recombination, collisional excitation and the laser interaction with plasma, the time resolved studies offer the most logical approach

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis deals with the fabrication and characterization of novel all-fiber components for access networks. All fiber components offer distinctive advantages due to low forward and backward losses, epoxy free optical path and high power handling. A novel fabrication method for monolithic 1x4 couplers, which are vital components in distributed passive optical networks, is realized. The fabrication method differs from conventional structures with a symmetric coupling profile and hence offers ultra wideband performance and easy process control. New structure for 1x4 couplers, by fusing five fibers is proposed to achieve high uniformity, which gives equivalent uniformity performance to 1x4 planar lightwave splitters, isolation in fused fiber WDM is improved with integration of long period gratings. Packaging techniques of fused couplers are analyzed for long term stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectroscopic analysis of the emission from the plasma produced by irradiating a highT c superconducting GdBa2Cu3O7 target with a high power Nd:YAG laser beam shows the existence of the bands from different oxides in addition to the lines from neutrals and ions of the constituent elements. The spectral emissions by oxide species in laser-induced plasma show considerable time delays as compared to those from neutral and ionic species. Recombination processes taking place during the cooling of the hot plasma, rather than the plasma expansion velocities, have been found to be responsible for the observed time delays in this case. The decays of emission intensities from various species are found to be non-exponential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the possibility of realizing, all-optical switching in gold nanosol. Two overlapping laser beams are used for this purpose, due to which a low-power beam passing collinear to a high-power beam will undergo cross phase modulation and thereby distort the spatial profile. This is taken to advantage for performing logic operations. We have also measured the threshold pump power to obtain a NOT gate and the minimum response time of the device. Contrary to the general notion that the response time of thermal effects used in this application is of the order of milliseconds, we prove that short pump pulses can result in fast switching. Different combinations of beam splitters and combiners will lead to the formation of other logic functions too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present our recent achievements in the growing and optical characterization of KYb(WO4)2 (hereafter KYbW) crystals and demonstrate laser operation in this stoichiometric material. Single crystals of KYbW with optimal crystalline quality have been grown by the top-seeded-solution growth slow-cooling method. The optical anisotropy of this monoclinic crystal has been characterized, locating the tensor of the optical indicatrix and measuring the dispersion of the principal values of the refractive indices as well as the thermo-optic coefficients. Sellmeier equations have been constructed valid in the visible and near-IR spectral range. Raman scattering has been used to determine the phonon energies of KYbW and a simple physical model is applied for classification of the lattice vibration modes. Spectroscopic studies (absorption and emission measurements at room and low temperature) have been carried out in the spectral region near 1 µm characteristic for the ytterbium transition. Energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and the vibronic substructure has been identified. The intrinsic lifetime of the upper laser level has been measured taking care to suppress the effect of reabsorption and the intrinsic quantum efficiency has been estimated. Lasing has been demonstrated near 1074 nm with 41% slope efficiency at room temperature using a 0.5 mm thin plate of KYbW. This laser material holds great promise for diode pumped high-power lasers, thin disk and waveguide designs as well as for ultrashort (ps/fs) pulse laser systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-induced damage is the principal limiting constraint in the design and operation of high-power laser systems used in fusion and other high-energy laser applications. Therefore, an understanding of the mechanisms which cause the radiation damage to the components employed in building a laser and a knowledge of the damage threshold of these materials are of great importance in designing a laser system and to operate it without appreciable degradation in performance. This thesis, even though covers three distinct problems for investigations using a dye Q-switched multimode Nd:glass laser operating at 1062 nm and emitting 25 ns (FWHM) pulses, lays its main thrust on damage threshold studies on thin films. Using the same glass laser two-photon excited fluorescence in rhodamine 6G and generation and characterisation of a carbon plasma have also been carried out. The thesis is presented in seven chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-induced damage is the principal limiting constraint in the design and operation of high-power laser systems used in fusion and other high-energy laser applications. Therefore, an understanding of the mechanisms which cause the radiation damage to the components employed in building a laser and a knowledge of the damage threshold of these materials are of great importance in designing a laser system and to operate it without appreciable degradation in performance. This thesis, even though covers three distinct problems for investigations using a dye Q-switched multimode Nd:glass laser operating at 1062 nm and emitting 25 ns (FWHM) pulses, lays its main thrust on damage threshold studies on thin films. Using the same glass laser two-photon excited fluorescence in rhodamine 6G and generation and characterisation of a carbon plasma have also been carried out.