989 resultados para Higgs Physics
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A search for new physics is presented based on an event signature of at least three jets accompanied by large missing transverse momentum, using a data sample corresponding to an integrated luminosity of 36 pb(-1) collected in proton-proton collisions at root s = 7 TeV with the CMS detector at the LHC. No excess of events is observed above the expected standard model backgrounds, which are all estimated from the data. Exclusion limits are presented for the constrained minimal supersymmetric extension of the standard model. Cross section limits are also presented using simplified models with new particles decaying to an undetected particle and one or two jets.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We analyze the production and detection of the Higgs boson in the next generation of linear e+e-colliders operating in the egamma mode. In particular, we study the production mechanism e+gamma --> egammagamma --> e + H, where one photon is generated via the laser backscattering mechanism, while the other is radiated via the usual bremsstrahlung process. We show that this is the most important mechanism for Higgs boson production in a 500 GeV egamma collider for M(H) greater than or similar to 140 GeV. We also study the signals and backgrounds for detection of the Higgs boson in the different decay channels bbBAR, W+W-, and ZZ, and suggest kinematical cuts to improve the signature of an intermediate-mass Higgs boson.
Resumo:
We study the associated production of Z and standard model Higgs bosons in high energy gamma gamma collisions with the photons originating from Compton laser backscattering. According to our results, within the framework of the standard model, this process will give rise only to very few events for a yearly integrated luminosity of 10 fb(-1), even at very high energies.
Resumo:
Extensions of the standard model with N Higgs doublets are simple extensions presenting a rich mathematical structure. An underlying Minkowski structure emerges from the study of both variable space and parameter space. The former can be completely parametrized in terms of two future lightlike Minkowski vectors with spatial parts forming an angle whose cosine is -(N-1)(-1). For the parameter space, the Minkowski parametrization enables one to impose sufficient conditions for bounded below potentials, characterize certain classes of local minima, and distinguish charge breaking vacua from neutral vacua. A particular class of neutral minima presents a degenerate mass spectrum for the physical charged Higgs bosons.
Resumo:
The DO experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of DO collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in DO by developing a grid in the DO Southern Analysis Region (DOSAR), DOSAR-Grid, using a available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the DOSAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.
Resumo:
The SLD Barrel Cherenkov Ring Imaging Detector was fully operational in the 1992 physics data run. The electron drift velocity and magnetic field deflection of electron trajectories have been measured. Cherenkov rings have been observed from both the liquid and gas radiators. The number and the resolution of the angle of Cherenkov photons have been measured to be approximately equal to design specifications.