996 resultados para Heavy particles (Nuclear physics)
Resumo:
The ground state properties of the Pb isotopic are studied by using the axially deformed relativistic mean field (RMF) calculation with the parameter set TM1. The pairing correlation is treated by the BCS method and the isospin dependent pairing force is used. The 'blocking' method is used to deal with unpaired nucleons. The theoretical results show that the relativistic mean field theory with non-linear self-interactions of mesons provides a good description of the binding energy and neutron separation energy. The present paper focus on the physical mechanism of the Pb isotope shifts.
Resumo:
In order to reduce the influence of the stray electric field of the buncher in the axial injection system of SFC and to improve the injection efficiency of SFC, the existing buncher electrode is investigated and a new electrode is designed. The influences of the electric field to the beams for the both cases are simulated. The simulation results show that the bunching efficiency is improved from 55% to 74% with the new electrode. At the same time, the influence of the space charge is computed and according to the results, the location of the buncher is readjusted too.
Resumo:
Based on several facts of CSRrn, such as the layout of the ring, the lattice parameters, exiting Schottky noise diagnosis equipment and fund, the primary stochastic cooling design of CSRm has been carried out. The optimum cooling time and the optimum cooling bandwidth axe obtained through simulation using the cooling function. The results indicate that the stochastic cooling is quite a powerful cooling method for CSRm. The comparison of the cooling effects of stochastic cooling and electron cooling in CSR are also presented. We can conclude that the combination of the two cooling methods on CSRrn will improve the beam cooling rate and quality beam greatly.
Resumo:
Excitation functions of the reaction products B, C, N, O, F and Ne emitted from the dissipative reaction of (19) F+(27) Al have been measured at incident energies from 110.25MeV to 118.75MeV in steps of 250keV. The moments of inertia of the intermediate dinuclear system formed in the reaction are extracted from the energy autocorrelation functions of the products. Comparing the moment of inertia extracted from the experimental data with the calculated one by using the sticking limit, it indicates that the formed dinuclear system has a large deformation in the reaction process.
Resumo:
Based on a transport model IBUU04, the double n/p ratio is studied. It is found that the double n/p ratio has almost the same sensitivity to the density dependence of nuclear symmetry energy as the single n/p ratio does. Because the double n/p ratio of nucleon emissions taken from two reaction systems can reduce systemic errors effectively, it is thus more useful for constraining the density-dependent symmetry energy further.
Resumo:
The relation between the input impedance and the characteristic parameters of a cavity, such as the resonance frequency, shunt impedance and. the quality factor, has been obtained based on the equivalent circuit of the cavity and the coupling system. Using the matching condition, the ratio of coupling capacitance to the equivalent capacitance of the cavity can be acquired as a function of the characteristic parameters of the cavity, the value of the coupling capacitance can be obtained with a help of a numerical simulation and the perturbation theory, and then the perfect matching between the cavity and the transmission line can be procured. The application of these results on a model cavity is presented too.
Resumo:
Tb-140 and Dy-141 were produced via fusion evaporation in the reaction Ca-40+Cd-106. Their beta-delayed proton decays were studied by means of "p-gamma" coincidence in combination with a He-jet tape transport system, including half-lives, proton energy spectra, gamma-transitions following the proton emissions, and the branching ratios to the low-lying states in the grand-daughter nuclei. The ground-state spins and parities of Tb-140 and Dy-141 were extracted as 7(+/-) and 9/2(+/-), respectively, by fitting the experimental data with a statistical model calculation. The configuration-constrained nuclear potential energy surfaces (NPES) of Tb-140 and Dy-141 were calculated by using the Woods-Saxon Strutinsky method, which indicate the ground-state spins and parities of Tb-140 and Dy-147 to be 7(+) and 9/2(-), respectively. In addition, the configuration-constrained NPES of Dy-143 was also calculated by using the same method. From the NPES a 1/2(+) ground state and a 11/2(-) isomer with the excitation energy of 198keV were found. The calculated results are consistent with our experimental data on the decay of Dy-143 reported in Eur. Phys. J., 2003, A16: 347-351.
Resumo:
Within the Boltzmann-Langevin equation, the neutron cluster production cross sections in the reactions induced by Be-14, He-8, He-6, Li-11, B-17, Be-11, C-19 on C-12 at 35MeV/u were studied. The experimental data for (4)n production cross section from Be-14+C-12 at 35MeV/u can be reproduced. It is found that the production cross section of neutron cluster is large in the reaction that the projectile has more halo nucleons. And the projectiles with big mass number are easy to produce the neutron cluster, when they have the same number of halo nucleons. The neutron cluster is probably mainly from the halo nucleons of projectile.
Resumo:
Application of electron-cooling upgrades the quality of ion beams in the storage rings and brings new problems. The transverse magnetic field distorts the ion orbit while guiding the intense electron beam. The closed-orbit distortion should be and can be localized and controlled well inside the ring acceptance. This paper deals with the field in the e-cool section and concomitant COD of ion orbit and shows the correction scheme.
Resumo:
Electron beam longitudinal temperature is an important parameter on electron cooling devise. In this paper, electron beam longitudinal temperature on the HIRFL-CSR electron cooling devise is deduced from four important factors-flattened distribution, electrostatic accelerate, space charge effect and beam scattering.
Resumo:
A new axial beam injection system is designed and being constructed at the HIRFL. It consists of 2 GLASSER lenses, 1 dipole, 5 quadrupoles and 3 solenoids. There are two beam line branches for 14.5GHz ECR ion source and 18.5GHz super conducting ECR ion source. Both transverse and longitudinal beam optics are improved in contrast with the old one. The layout, beam optics calculation results and further improved design are given.
Resumo:
In order to match the beam from the injection machine SFC of the HIRFL to the main ring of HIRFL-CSR, both beam emittance confining method and beam energy spread reducing method are proposed. The beam preparation principles and calculation results are presented
Resumo:
The properties of the nuclei belonging to the newly observed nuclei starting from (288)115 have been studied with the generalized liquid drop model connected with WKB approximation. The calculated results have been compared with the results of the DDM3Y theory and the experimental data. The half lives of this new alpha decay chain have been well tested from the consistence of the macroscopic, microscopic and the experimental data.
Resumo:
We study hard photon production from a chemically non-equilibrated quark-gluon plasma with finite baryon density on the basis of Juttner distribution of partons of the system. We find that the photon production is ruled by early times, main contributions are given by rapidities y <= 6, and photon yield is a strongly increasing function of the initial quark chemical potential. In addition, we note that contribution from bremsstrahlung and Compton process qg -> q gamma dominates.
Resumo:
High-spin level structure of Au-188 has been studied via the Yb-173(F-19, 4n gamma) reaction using techniques of in-beam gamma-ray spectroscopy. Based on the experimental results, the level scheme of 188Au has been revised significantly. The previously reported positive parity levels have been modified and a new 20(+) level was proposed to feed the 18(+) states via two low-energy transitions. The existence of the 20(+) and the level structures above it are similar to those in the neighboring odd-odd Au-190,Au-192, therefore, the pi h(11/12)(-1)circle times-vi(13/2)(-2)h(9/2)(-1) configuration was assigned to the 20(+) state.