970 resultados para Heart-rate Patterns
Resumo:
The authors investigated the effect of manual hyperinflation (MHI) with set parameters applied to patients on mechanical ventilation on hemodynamics, respiratory mechanics, and gas exchange. Sixteen critically ill patients post-septic shock, with acute lung injury, were studied. Heart rate, arterial pressure, and mean pulmonary artery pressure were recorded every minute. pulmonary artery occlusion pressure, cardiac output, arterial blood gases, and dynamic compliance (C-dyn) were recorded pre- and post-MHI. From this, systemic vascular resistance index (SVRI), cardiac index, oxygen delivery, and partial pressure of oxygen:fraction of inspired oxygen (PaO2:FiO(2)) ratio were calculated. There were significant increases in SVRI (P < 0.05) post-MHI and diastolic arterial pressure (P < 0.01)during MHI. C-dyn increased post-MHI (P < 0.01) and was sustained at 20 minutes post-MHI (P < 0.01). Subjects with an intrapulmonary cause of lung disease had a significant decrease (P = 0.02) in PaO2:FiO(2), and those with extrapulmonary causes of lung disease had a significant increase (P < 0.001) in PaO2:FiO(2) post-MHI. In critically ill patients, MHI resulted in an improvement in lung mechanics and an improvement in gas exchange in patients with lung disease due to extrapulmonary events and did not result in impairment of the cardiovascular system.
Resumo:
Chest clapping, vibration, and shaking were studied in 10 physiotherapists who applied these techniques on an anesthetized animal model. Hemodynamic variables (such as heart rate, blood pressure, pulmonary artery pressure, and right atrial pressure) were measured during the application of these techniques to verify claims of adverse events. In addition, expired tidal volume and peak expiratory flow rate were measured to ascertain effects of these techniques. Physiotherapists in this study applied chest clapping at a rate of 6.2 +/- 0.9 Hz, vibration at 10.5 +/- 2.3 Hz, and shaking at 6.2 +/- 2.3 Hz. With the use of these rates, esophageal pressure swings of 8.8 +/- 5.0, 0.7 +/- 0.3, and 1.4 +/- 0.7 mmHg resulted from clapping, vibration, and shaking respectively. Variability in rates and forces generated by these techniques was 80% of variance in shaking force (P = 0.003). Application of these techniques by physiotherapists was found to have no significant effects on hemodynamic and most ventilatory variables in this study. From this study, we conclude that chest clapping, vibration, and shaking 1) can be consistently performed by physiotherapists; 2) are significantly related to physiotherapists' characteristics, particularly clinical experience; and 3) caused no significant hemodynamic effects.
Resumo:
This study investigated the haemodynamic response to the 90-minute application of 85 Hz transcutaneous electrical nerve stimulation (TENS) to the T1 and T5 nerve roots. Comparison was made between 20 healthy subjects who had TENS stimulation and a separate group of 20 healthy subjects who rested for 90 minutes. Pulse and blood pressure were measured just prior to the start of TENS stimulation, after 30 minutes of stimulation, and after 90 minutes of stimulation (immediately after stopping TENS) or at completion of the rest time depending on group allocation. The rate pressure product was calculated from the pulse and systolic blood pressure data. Multivariate repeated measures analysis showed a significant group effect for TENS (p = 0.048). Univariate repeated measures analyses showed a significant group by time effect due to TENS on systolic blood pressure over the 90-minute time period (p = 0.028). Separate group repeated measures ANOVA showed a significant decline in heart rate (p = 0.000), systolic blood pressure (p = 0.013) and rate pressure product (p = 0.000) for the TENS group, while the control resting group showed a significant decline in heart rate only (p = 0.04). The application of 85 Hz TENS to the upper thoracic nerve roots causes no adverse haemodynamic effects in healthy subjects.
Resumo:
The aim of this study was to compare the effects of two high-intensity, treadmill interval-training programs on 3000-m and 5000-m running performance. Maximal oxygen uptake ((V) over dot O-2max), the running speed associated with (V) over dot O-2max (nu (V) over dot O-2max), the time for which nu (V) over dot O-2max can be maintained (T-max), running economy (RE), ventilatory threshold (VT) and 3000-m and 5000-m running times were determined in 27 well-trained runners. Subjects were then randomly assigned to three groups; (1) 60% T-max (2) 70% T-max and (3) control. Subjects in the control group continued their normal training and subjects in the two T-max groups undertook a 4-week treadmill interval-training program with the intensity set at nu (V) over dot O-2max and the interval duration at the assigned T-max. These subjects completed two interval-training sessions per week (60% T-max = six intervals/session, 70% T-max group = five intervals/session). Subjects were re-tested on all parameters at the completion of the training program. There was a significant improvement between pre- and post-training values in 3000-m time trial (TT) performance in the 60% T-max group compared to the 70% T,,a, and control groups [mean (SE); 60% T-max = 17.6 (3.5) s, 70% T-max = 6.3 (4.2) s, control = 0.5 (7.7) s]. There was no significant effect of the training program on 5000-m TT performance [60% T-max = 25.8 (13.8) s, 70% T-max = 3.7 (11.6) s, control = 9.9 (13.1) s]. Although there were no significant improvements in (V) over dot O-2max, nu (V) over dot (2max) and RE between groups, changes in (V) over dot O-2max and RE were significantly correlated with the improvement in the 3000-m TT. Furthermore, VT and T-max were significantly higher in the 60% Tmax group post-compared to pre-training. In conclusion, 3000-m running performance can be significantly improved in a group of well-trained runners, using a 4-week treadmill interval training program at nu (V) over dot O-2max with interval durations of 60% T-max.
Resumo:
The aim of this study was to compare accumulated oxygen deficit data derived using two different exercise protocols with the aim of producing a less time-consuming test specifically for use with athletes. Six road and four track male endurance cyclists performed two series of cycle ergometer tests. The first series involved five 10 min sub-maximal cycle exercise bouts, a (V) over dotO(2peak) test and a 115% (V) over dotO(2peak) test. Data from these tests were used to estimate the accumulated oxygen deficit according to the calculations of Medbo et al. (1988). In the second series of tests, participants performed a 15 min incremental cycle ergometer test followed, 2 min later, by a 2 min variable resistance test in which they completed as much work as possible while pedalling at a constant rate. Analysis revealed that the accumulated oxygen deficit calculated from the first series of tests was higher (P< 0.02) than that calculated from the second series: 52.3 +/- 11.7 and 43.9 +/- 6.4 ml . kg(-1), respectively (mean +/- s). Other significant differences between the two protocols were observed for (V) over dot O-2peak, total work and maximal heart rate; all were higher during the modified protocol (P
Resumo:
The aim of this study was to compare the cycling performance of cyclists and triathletes. Each week for 3 weeks, and on different days, 25 highly trained male cyclists and 18 highly trained male triathletes performed: (1) an incremental exercise test on a cycle ergometer for the determination of peak oxygen consumption ((V) over dot O-2peak), peak power output and the first and second ventilatory thresholds, followed 15 min later by a sprint to volitional fatigue at 150% of peak power output; (2) a cycle to exhaustion test at the (V) over dot O-2peak power output; and (3) a 40-km cycle time-trial. There were no differences in (V) over dot O-2peak, peak power output, time to volitional fatigue at 150% of peak power output or time to exhaustion at (V) over dot O-2peak power output between the two groups. However, the cyclists had a significantly faster time to complete the 40-km time-trial (56:18 +/- 2:31 min:s; mean +/- s) than the triathletes (58:57 +/- 3:06 min:s; P < 0.01), which could be partially explained (r = 0.34-0.51; P < 0.05) by a significantly higher first (3.32 +/- 0.36 vs 3.08 +/- 0.36 l . min(-1)) and second ventilatory threshold (4.05 +/- 0.36 vs 3.81 +/- 0.29 l . min(-1); both P < 0.05) in the cyclists compared with the triathletes. In conclusion, cyclists may be able to perform better than triathletes in cycling time-trial events because they have higher first and second ventilatory thresholds.
Resumo:
The purpose of the present study was to examine the reproducibility of laboratory-based 40-km cycle time-trial performance on a stationary wind-trainer. Each week, for three consecutive weeks, and on different days, forty-three highly trained male cyclists ((x) over bar +/- SD; age = 25 +/- 6 y; mass = 75 +/- 7 kg; peak oxygen uptake [(V) over dot O-2 peak] = 64.8 +/- 5.2 ml x kg(-1) x min(-1)) performed: 1) a (V) over dot O-2 peak test, and 2) a 40-km time-trial on their own racing bicycle mounted to a stationary wind-trainer (Cateye - Cyclosimulator). Data from all tests were compared using a one-way analysis of variance. Performance on the second and third 40-km time-trials were highly related (r = 0.96; p < 0.001), not significantly different (57:21 +/- 2:57 vs. 57:12 +/- 3:14 min:s), and displayed a low coefficient of variation (CV) = 0.9 +/- 0.7%. Although the first 40-km time-trial (58:43 +/- 3:17min:s) was not significantly different from the second and third tests (p = 0.06), inclusion of the first test in the assessment of reliability increased within-subject CV to 3.0 +/- 2.9%. 40-km time-trial speed (km x h(-1)) was significantly (p < 0.001) related to peak power output (W; r = 0.75), (V) over dot O-2 peak (1 x min(-1); r = 0.53), and the second ventilatory turnpoint (1 x min(-1); r = 0.68) measured during the progressive exercise tests. These data demonstrate that the assessment of 40-km cycle time-trial performance in well-trained endurance cyclists on a stationary wind-trainer is reproducible, provided the athletes perform a familiarization trial.
Resumo:
This study aimed to develop a practical method of estimating energy expenditure (EE) during tennis. Twenty-four elite female tennis players first completed a tennis-specific graded test in which five different intensity levels were applied randomly. Each intensity level was intended to simulate a game of singles tennis and comprised six 14 s periods of activity alternated with 20 s of active rest. Oxygen consumption (VO2) and heart rate (HR) were measured continuously and each player's rate of perceived exertion (RPE) was recorded at the end of each intensity level. Rate of energy expenditure (EEVO2) during the test was calculated using the sum of VO2 during play and the 'O-2 debt' during recovery, divided by the duration of the activity. There were significant individual linear relationships between EEVO2 and RPE, EEVO2 and HR, (rgreater than or equal to0.89 rgreater than or equal to0.93; p
Resumo:
The present study aimed to 1) examine the relationship between laboratory-based measures and high-intensity ultraendurance (HIU) performance during an intermittent 24-h relay ultraendurance mountain bike race (similar to20 min cycling, similar to60min recovery), and 2) examine physiological and performance based changes throughout the HIU event. Prior to the HIU event, four highly-trained male cyclists (age = 24.0 +/- 2.1 yr; mass = 75.0 +/- 2.7 kg; (V)over dot O-2peak = 70 +/- 3 ml.kg(-1).min(-1)) performed 1) a progressive exercise test to determine peak Volume of oxygen uptake ((V)over dot O-2peak), peak power output (PPO), and ventilatory threshold (T-vent), 2) time-to-fatigue tests at 100% (TF100) and 150% of PPO (TF150), and 3) a laboratory simulated 40-km time trial (TT40). Blood lactate (Lac(-)), haematocrit and haemoglobin were measured at 6-h intervals throughout the HIU event, while heart rate (HR) was recorded continuously. Intermittent HIU performance, performance HR, recovery HR, and Lac declined (P < 0.05), while plasma volume expanded (P < 0.05) during the HIU event. TF100 was related to the decline in lap time (r = -0.96; P < 0.05), and a trend (P = 0.081) was found between TF150 and average intermittent HIU speed (r = 0.92). However, other measures (V)over dot O-2peak, PPO, T-vent, and TT40) were not related to HIU performance. Measures of high-intensity endurance performance (TF100, TF150) were better predictors of intermittent HIU performance than traditional laboratory-based measures of aerobic capacity.
Resumo:
Artigo original Ergoespirometria
Resumo:
A transitory increase in blood pressure (BP) is observed following upper airway surgery for obstructive sleep apnea syndrome but the mechanisms implicated are not yet well understood. The objective of the present study was to evaluate changes in BP and heart rate (HR) and putative factors after uvulopalatopharyngoplasty and septoplasty in normotensive snorers. Patients (N = 10) were instrumented for 24-h ambulatory BP monitoring, nocturnal respiratory monitoring and urinary catecholamine level evaluation one day before surgery and on the day of surgery. The influence of postsurgery pain was prevented by analgesic therapy as confirmed using a visual analog scale of pain. Compared with preoperative values, there was a significant (P < 0.05) increase in nighttime but not daytime systolic BP (119 ± 5 vs 107 ± 3 mmHg), diastolic BP (72 ± 4 vs 67 ± 2 mmHg), HR (67 ± 4 vs 57 ± 2 bpm), respiratory disturbance index (RDI) characterized by apnea-hypopnea (30 ± 10 vs 13 ± 4 events/h of sleep) and norepinephrine levels (22.0 ± 4.7 vs 11.0 ± 1.3 µg l-1 12 h-1) after surgery. A positive correlation was found between individual variations of BP and individual variations of RDI (r = 0.81, P < 0.01) but not between BP or RDI and catecholamines. The visual analog scale of pain showed similar stress levels on the day before and after surgery (6.0 ± 0.8 vs 5.0 ± 0.9 cm, respectively). These data strongly suggest that the cardiovascular changes observed in patients who underwent uvulopalatopharyngoplasty and septoplasty were due to the increased postoperative RDI.
Resumo:
Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity.
Resumo:
Introdução: Muito embora os estudos apontem para um efeito positivo do exercício físico, em especial o treinamento com exercício aeróbio, sobre a pressão arterial e a distensibilidade arterial, pouco se sabe sobre os efeitos do treinamento com exercício de resistência aeróbia sobre a complacência vascular de indivíduos jovens saudáveis. Objetivos: Avaliar o efeito de 16 semanas de treinamento de resistência aeróbia sobre a função vascular e a pressão arterial de indivíduos jovens sedentários. Métodos: Foram avaliados 56 voluntários (de ambos os sexos, na faixa etária de 18 à 29 anos) antes e após 16 semanas de treinamento com corrida 3 vezes por semana. As medidas de pressão arterial foram realizadas de acordo com a VI Diretrizes Brasileiras de Hipertensão e a velocidade de onda de pulso (VOP) foi realizada com a utilização de um gravador automático computadorizado e os resultados foram analisados pelo programa Complior®. Resultados: Dos 56 indivíduos que participaram do presente estudo, 44 eram do sexo masculino (78,5%) e 12 do sexo feminino (21,5 %). Eles apresentaram idade de 22 ± 3 anos, estatura de 1,75 ± 0,07 metros, circunferência de cintura de 79,6 ± 7,8 cm e PAM de 79 ± 6,4 mmHg. O treinamento promoveu redução da FC repouso (69 ± 7,0 vs. 61 ± 7,1; p<0,05) e aumento do VO2pico (43,3 ± 7,3 vs. 50,1 ± 7,2; p<0,05). Entretanto, pressão arterial sistólica (107 ± 9,4 vs. 110 ± 10), pressão arterial diastólica (63 ± 5,7 vs. 62 ± 5,5), pressão de pulso (44 ± 7,0 vs. 48 ± 7,0) e VOP (6,5 ± 1,1 vs. 6,5 ± 1,1) não apresentaram alteração após o treinamento físico (p>0,05). Conclusões: Podemos concluir que 16 semanas de treinamento de resistência aeróbia foram capazes de aumentar a aptidão cardiorrespiratória, porém não provocaram alterações sobre a velocidade de onda de pulso e pressão arterial em voluntários saudáveis e sedentários. Sugere-se que a ausência de adaptações vasculares após o treinamento seja devido às características da amostra – indivíduos jovens e saudáveis.
Resumo:
The HCI community is actively seeking novel methodologies to gain insight into the user’s experience during interaction with both the application and the content. We propose an emotional recognition engine capable of automatically recognizing a set of human emotional states using psychophysiological measures of the autonomous nervous system, including galvanic skin response, respiration, and heart rate. A novel pattern recognition system, based on discriminant analysis and support vector machine classifiers is trained using movies’ scenes selected to induce emotions ranging from the positive to the negative valence dimension, including happiness, anger, disgust, sadness, and fear. In this paper we introduce an emotion recognition system and evaluate its accuracy by presenting the results of an experiment conducted with three physiologic sensors.