928 resultados para Handling and simulated storage
Resumo:
A biosensor for urea has been developed based on the observation that urea is a powerful active-site inhibitor of amidase, which catalyzes the hydrolysis of amides such as acetamide to produce ammonia and the corresponding organic acid. Cell-free extract from Pseudomonas aeruginosa was the source of amidase (acylamide hydrolase, EC 3.5.1.4) which was immobilized on a polyethersulfone membrane in the presence of glutaraldehyde; anion-selective electrode for ammonium ions was used for biosensor development. Analysis of variance was used for optimization of the biosensorresponse and showed that 30 mu L of cell-free extract containing 7.47 mg protein mL(-1), 2 mu L of glutaraldehyde (5%, v/v) and 10 mu L of gelatin (15%, w/v) exhibited the highest response. Optimization of other parameters showed that pH 7.2 and 30 min incubation time were optimum for incubation ofmembranes in urea. The biosensor exhibited a linear response in the range of 4.0-10.0 mu M urea, a detection limit of 2.0 mu M for urea, a response timeof 20 s, a sensitivity of 58.245 % per mu M urea and a storage stability of over 4 months. It was successfully used for quantification of urea in samples such as wine and milk; recovery experiments were carried out which revealed an average substrate recovery of 94.9%. The urea analogs hydroxyurea, methylurea and thiourea inhibited amidase activity by about 90%, 10% and 0%, respectively, compared with urea inhibition.
Resumo:
The use of distributed energy resources, based on natural intermittent power sources, like wind generation, in power systems imposes the development of new adequate operation management and control methodologies. A short-term Energy Resource Management (ERM) methodology performed in two phases is proposed in this paper. The first one addresses the day-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. The ERM scheduling is a complex optimization problem due to the high quantity of variables and constraints. In this paper the main goal is to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixedinteger non-linear programming approach. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units and 1000 electric vehicles has been implemented in a simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.
Resumo:
The increasing number of players that operate in power systems leads to a more complex management. In this paper a new multi-agent platform is proposed, which simulates the real operation of power system players. MASGriP – A Multi-Agent Smart Grid Simulation Platform is presented. Several consumer and producer agents are implemented and simulated, considering real characteristics and different goals and actuation strategies. Aggregator entities, such as Virtual Power Players and Curtailment Service Providers are also included. The integration of MASGriP agents in MASCEM (Multi-Agent System for Competitive Electricity Markets) simulator allows the simulation of technical and economical activities of several players. An energy resources management architecture used in microgrids is also explained.
Resumo:
Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.
Resumo:
The large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.
Resumo:
Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para a obtenção do grau de mestre em Educação Artística - Especialização em Teatro na Educação
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
Resumo:
Amorphous SiC tandem heterostructures are used to filter a specific band, in the visible range. Experimental and simulated results are compared to validate the use of SiC multilayered structures in applications where gain compensation is needed or to attenuate unwanted wavelengths. Spectral response data acquired under different frequencies, optical wavelength control and side irradiations are analyzed. Transfer function characteristics are discussed. Color pulsed communication channels are transmitted together and the output signal analyzed under different background conditions. Results show that under controlled wavelength backgrounds, the device sensitivity is enhanced in a precise wavelength range and quenched in the others, tuning or suppressing a specific band. Depending on the background wavelength and irradiation side, the device acts either as a long-, a short-, or a band-rejection pass filter. An optoelectronic model supports the experimental results and gives insight on the physics of the device.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
The development of high performance monolithic RF front-ends requires innovative RF circuit design to make the best of a good technology. A fully differential approach is usually preferred, due to its well-known properties. Although the differential approach must be preserved inside the chip, there are cases where the input signal is single-ended such as RF image filters and IF filters in a RF receiver. In these situations, a stage able to convert single-ended into differential signals (balun) is needed. The most cited topology, which is capable of providing high gain, consists on a differential stage with one of the two inputs grounded. Unfortunately, this solution has some drawbacks when implemented monolithically. This work presents the design and simulated results of an innovative high-performance monolithic single to differential converter, which overcomes the limitations of the circuits.The integration of the monolithic active balun circuit with an LNA on a 0.18μm CMOS process is also reported. The circuits presented here are aimed at 802.11a. Section 2 describes the balun circuit and section 3 presents its performance when it is connected to a conventional single-ended LNA. Section 4 shows the simulated performance results focused at phase/amplitude balance and noise figure. Finally, the last section draws conclusions and future work.
Resumo:
Co‐Re superlattices were prepared with nominal periodicities of 65–67 Å and varying bilayer composition. The structural characterization was made by x‐ray diffraction and Rutherford backscattering spectrometry (RBS). First, second, and third order satellites are observed in the x‐ray diffractogram at 2θ values and with intensities close to those predicted by simulation. This confirms the coherence of the superlattice. RBS measurements combined with RUMP simulations give information on interface sharpness and the absolute thicknesses of the Co and Re layers. Discrepancies between the experimental and simulated diffractograms are found for Co thicknesses below 18 Å.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
Individuals spend 80-90% of their day indoors and elderly subjects are likely to spend even a greater amount of time indoors. Thus, indoor air pollutants such as bioaerosols may exert a significant impact on this age group. The aim of this study was to characterize fungal contamination within Portuguese elderly care centers. Fungi were measured using conventional as well as molecular methods in bedrooms, living rooms, canteens, storage areas, and outdoors. Bioaerosols were evaluated before and after the microenvironments' occupancy in order to understand the role played by occupancy in fungal contamination. Fungal load results varied from 32 colony-forming units CFU m(-3) in bedrooms to 228 CFU m(-3) in storage areas. Penicillium sp. was the most frequently isolated (38.1%), followed by Aspergillus sp. (16.3%) and Chrysonilia sp. (4.2%). With respect to Aspergillus genus, three different fungal species in indoor air were detected, with A. candidus (62.5%) the most prevalent. On surfaces, 40 different fungal species were isolated and the most frequent was Penicillium sp. (22.2%), followed by Aspergillus sp. (17.3%). Real-time polymerase chain reaction did not detect the presence of A. fumigatus complex. Species from Penicillium and Aspergillus genera were the most abundant in air and surfaces. The species A. fumigatus was present in 12.5% of all indoor microenvironments assessed. The living room was the indoor microenvironment with lowest fungal concentration and the storage area was highest.
Resumo:
An Electrocardiogram (ECG) monitoring system deals with several challenges related with noise sources. The main goal of this text was the study of Adaptive Signal Processing Algorithms for ECG noise reduction when applied to real signals. This document presents an adaptive ltering technique based on Least Mean Square (LMS) algorithm to remove the artefacts caused by electromyography (EMG) and power line noise into ECG signal. For this experiments it was used real noise signals, mainly to observe the di erence between real noise and simulated noise sources. It was obtained very good results due to the ability of noise removing that can be reached with this technique. A recolha de sinais electrocardiogr a cos (ECG) sofre de diversos problemas relacionados com ru dos. O objectivo deste trabalho foi o estudo de algoritmos adaptativos para processamento digital de sinal, para redu c~ao de ru do em sinais ECG reais. Este texto apresenta uma t ecnica de redu c~ao de ru do baseada no algoritmo Least Mean Square (LMS) para remo c~ao de ru dos causados quer pela actividade muscular (EMG) quer por ru dos causados pela rede de energia el ectrica. Para as experiencias foram utilizados ru dos reais, principalmente para aferir a diferen ca de performance do algoritmo entre os sinais reais e os simulados. Foram conseguidos bons resultados, essencialmente devido as excelentes caracter sticas que esta t ecnica tem para remover ru dos.