951 resultados para HUMAN-ENDOTHELIAL-CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension is a side effect of systemically administered glucocorticoids, but the underlying molecular mechanism remains poorly understood. Ingestion of dexamethasone by rats telemetrically instrumented increased blood pressure progressively over 7 days. Plasma concentrations of Na+ and K+ and urinary Na+ and K+ excretion remained constant, excluding a mineralocorticoid-mediated mechanism. Plasma NO2−/NO3− (the oxidation products of NO) decreased to 40%, and the expression of endothelial NO synthase (NOS III) was found down-regulated in the aorta and several other tissues of glucocorticoid-treated rats. The vasodilator response of resistance arterioles was tested by intravital microscopy in the mouse dorsal skinfold chamber model. Dexamethasone treatment significantly attenuated the relaxation to the endothelium-dependent vasodilator acetylcholine, but not to the endothelium-independent vasodilator S-nitroso-N-acetyl-d,l-penicillamine. Incubation of human umbilical vein endothelial cells, EA.hy 926 cells, or bovine aortic endothelial cells with several glucocorticoids reduced NOS III mRNA and protein expression to 60–70% of control, an effect that was prevented by the glucocorticoid receptor antagonist mifepristone. Glucocorticoids decreased NOS III mRNA stability and reduced the activity of the human NOS III promoter (3.5 kilobases) to ≈70% by decreasing the binding activity of the essential transcription factor GATA. The expressional down-regulation of endothelial NOS III may contribute to the hypertension caused by glucocorticoids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show here that elevated levels of gonadotropins (luteinizing hormone and follicle stimulating hormone), as found in menopause or after ovariectomy, promote growth of human ovarian carcinoma by induction of tumor angiogenesis. Human epithelial ovarian cancer tumors progressed faster in ovariectomized mice. This induced growth could be attributed to the elevated levels of gonadotropins associated with loss of ovarian function because direct administration of gonadotropins also was effective in promoting tumor progression in vivo. On the other hand, gonadotropins had no direct effect on the proliferation of human ovarian cancer cells in vitro. Using MRI, we demonstrated that ovariectomy significantly (P < 0.02) induces neovascularization of human ovarian carcinoma spheroids implanted in nude mice. Moreover, conditioned medium of gonadotropin-treated human ovarian carcinoma cells showed increased mitogenic activity to bovine endothelial cells, and this activity could be blocked by neutralizing antibodies against luteinizing hormone and against vascular endothelial growth factor. Accordingly, gonadotropin stimulation resulted in a dose-dependent-induced expression of vascular endothelial growth factor in monolayer culture as well as in the outer proliferating cells of human ovarian cancer spheroids. These results demonstrate the significance of the elevated levels of gonadotropins, as found in menopause and in all ovarian cancer patients, on the progression of ovarian cancer and could explain the protective effect of estrogen replacement therapy. Based on these results, we suggest that hormonal therapy aimed at lowering the circulating levels of gonadotropins may possibly prolong remission in ovarian cancer by extending tumor dormancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A differentiation induction subtraction hybridization strategy is being used to identify and clone genes involved in growth control and terminal differentiation in human cancer cells. This scheme identified melanoma differentiation associated gene-7 (mda-7), whose expression is up-regulated as a consequence of terminal differentiation in human melanoma cells. Forced expression of mda-7 is growth inhibitory toward diverse human tumor cells. The present studies elucidate the mechanism by which mda-7 selectively suppresses the growth of human breast cancer cells and the consequence of ectopic expression of mda-7 on human breast tumor formation in vivo in nude mice. Infection of wild-type, mutant, and null p53 human breast cancer cells with a recombinant type 5 adenovirus expressing mda-7, Ad.mda-7 S, inhibited growth and induced programmed cell death (apoptosis). Induction of apoptosis correlated with an increase in BAX protein, an established inducer of programmed cell death, and an increase in the ratio of BAX to BCL-2, an established inhibitor of apoptosis. Infection of breast carcinoma cells with Ad.mda-7 S before injection into nude mice inhibited tumor development. In contrast, ectopic expression of mda-7 did not significantly alter cell cycle kinetics, growth rate, or survival in normal human mammary epithelial cells. These data suggest that mda-7 induces its selective anticancer properties in human breast carcinoma cells by promoting apoptosis that occurs independent of p53 status. On the basis of its selective anticancer inhibitory activity and its direct antitumor effects, mda-7 may represent a new class of cancer suppressor genes that could prove useful for the targeted therapy of human cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is part of a cytokine gene cluster and is directly linked to a conserved upstream inducible enhancer. Here we examined the in vitro and in vivo functions of the human GM-CSF enhancer and found that it was required for the correctly regulated expression of the GM-CSF gene. An inducible DNase I-hypersensitive site appeared within the enhancer in cell types such as T cells, myeloid cells, and endothelial cells that express GM-CSF, but not in nonexpressing cells. In a panel of transfected cells the human GM-CSF enhancer was activated in a tissue-specific manner in parallel with the endogenous gene. The in vivo function of the enhancer was examined in a transgenic mouse model that also addressed the issue of whether the GM-CSF locus was correctly regulated in isolation from other segments of the cytokine gene cluster. After correction for copy number the mean level of human GM-CSF expression in splenocytes from 11 lines of transgenic mice containing a 10.5-kb human GM-CSF transgene was indistinguishable from mouse GM-CSF expression (99% ± 56% SD). In contrast, a 9.8-kb transgene lacking just the enhancer had a significantly reduced (P = 0.004) and more variable level of activity (29% ± 89% SD). From these studies we conclude that the GM-CSF enhancer is required for the correct copy number-dependent expression of the human GM-CSF gene and that the GM-CSF gene is regulated independently from DNA elements associated with the closely linked IL-3 gene or other members of the cytokine gene cluster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficient expression of therapeutic genes in target cells or tissues is an important component of efficient and safe gene therapy. Utilizing regulatory elements from the human cytokeratin 18 (K18) gene, including 5′ genomic sequences and one of its introns, we have developed a novel expression cassette that can efficiently express reporter genes, as well as the human cystic fibrosis transmembrane conductance regulator (CFTR) gene, in cultured lung epithelial cells. CFTR transcripts expressed from the native K18 enhancer/promoter include two alternative splicing products, due to the activation of two cryptic splice sites in the CFTR coding region. Modification of the K18 intron and CFTR cDNA sequences eliminated the cryptic splice sites without changing the CFTR amino acid sequence, and led to enhanced CFTR mRNA and protein expression as well as biological function. Transgenic expression analysis in mice showed that the modified expression cassette can direct efficient and epithelium-specific expression of the Escherichia coli LacZ gene in the airways of fetal lungs, with no detectable expression in lung fibroblasts or endothelial cells. This is the first expression cassette which selectively directs lung transgene expression for CFTR gene therapy to airway epithelia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia is a prominent feature of malignant tumors that are characterized by angiogenesis and vascular hyperpermeability. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) has been shown to be up-regulated in the vicinity of necrotic tumor areas, and hypoxia potently induces VPF/VEGF expression in several tumor cell lines in vitro. Here we report that hypoxia-induced VPF/VEGF expression is mediated by increased transcription and mRNA stability in human M21 melanoma cells. RNA-binding/electrophoretic mobility shift assays identified a single 125-bp AU-rich element in the 3′ untranslated region that formed hypoxia-inducible RNA-protein complexes. Hypoxia-induced expression of chimeric luciferase reporter constructs containing this 125-bp AU-rich hypoxia stability region were significantly higher than constructs containing an adjacent 3′ untranslated region element without RNA-binding activity. Using UV-cross-linking studies, we have identified a series of hypoxia-induced proteins of 90/88 kDa, 72 kDa, 60 kDa, 56 kDa, and 46 kDa that bound to the hypoxia stability region element. The 90/88-kDa and 60-kDa species were specifically competed by excess hypoxia stability region RNA. Thus, increased VPF/VEGF mRNA stability induced by hypoxia is mediated, at least in part, by specific interactions between a defined mRNA stability sequence in the 3′ untranslated region and distinct mRNA-binding proteins in human tumor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carboxyl-terminal domain of thrombospondin-1 enhances the migration and proliferation of smooth muscle cells. Integrin-associated protein (IAP or CD47) is a receptor for the thrombospondin-1 carboxyl-terminal cell-binding domain and binds the agonist peptide 4N1K (kRFYVVMWKk) from this domain. 4N1K peptide stimulates chemotaxis of both human and rat aortic smooth muscle cells on gelatin-coated filters. The migration on gelatin is specifically blocked by monoclonal antibodies against IAP and a β1 integrin, rather than αvβ3 as found previously for 4N1K-stimulated chemotaxis of endothelial cells on gelatin. Both human and rat smooth muscle cells displayed a weak migratory response to soluble type I collagen; however, the presence of 4N1K peptide or intact thrombospondin-1 provoked a synergistic chemotactic response that was partially blocked by antibodies to α2 and β1 integrin subunits and to IAP. A combination of antiα2 and IAP monoclonal antibodies completely blocked chemotaxis. RGD peptide and antiαvβ3 mAb were without effect. 4N1K and thrombospondin-1 did not augment the chemotactic response of smooth muscle cells to fibronectin, vitronectin, or collagenase-digested type I collagen. Complex formation between α2β1 and IAP was detected by the coimmunoprecipitation of both α2 and β1 integrin subunits with IAP. These data suggest that IAP can associate with α2β1 integrin and modulate its function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yolk sac, first site of hematopoiesis during mammalian development, contains not only hematopoietic stem cells but also the earliest precursors of endothelial cells. We have previously shown that a nonadherent yolk sac cell population (WGA+, density <1.077, AA4.1+) can give rise to B cells, T cells, and myeloid cells both in vitro and in vivo. We now report on the ability of a yolk sac-derived cloned endothelial cell line (C166) to provide a suitable microenvironment for expansion of these early precursor cells. Single day 10 embryonic mouse yolk sac hematopoietic stem cells were expanded >100 fold within 8 days by coculture with irradiated C166 cells. Colony-forming ability was retained for at least three passages in vitro, with retention of the ability to differentiate into T-cell, B-cell, and myeloid lineages. Stem cell properties were maintained by a significant fraction of nonadherent cells in the third passage, although these stem cells expressed a somewhat more mature cell surface phenotype than the initial yolk sac stem cells. When reintroduced into adult allogeneic immunocompromised (scid) hosts, they were able to give rise to all of the leukocyte lineages, including T cells, B cells, and myeloid cells. We conclude that yolk sac endothelial cells can support the stable proliferation of multipotential hematopoietic stem cells, thus generating adequate numbers of cells for study of the mechanisms involved in their subsequent development and differentiation, for in vivo hematopoietic restitution, and for potential use as a vehicle for gene transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice deficient in the Flk-1 receptor tyrosine kinase are known to die in utero because of defective vascular and hematopoietic development. Here, we show that flk-1−/− embryonic stem cells are nevertheless able to differentiate into hematopoietic and endothelial cells in vitro, although they give rise to a greatly reduced number of blast colonies, a measure of hemangioblast potential. Furthermore, normal numbers of hematopoietic progenitors are found in 7.5-day postcoitum flk-1−/− embryos, even though 8.5-day postcoitum flk-1−/− embryos are known to be deficient in such cells. Our results suggest that hematopoietic/endothelial progenitors arise independently of Flk-1, but that their subsequent migration and expansion require a Flk-1-mediated signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) mediates angiogenic activity in a variety of estrogen target tissues. To determine whether estrogen has a direct transcriptional effect on VEGF gene expression, we developed a model system by transiently transfecting human VEGF promoter-luciferase reporter constructs into primary human endometrial cells and into Ishikawa cells, derived from a well-differentiated human endometrial adenocarcinoma. In primary endometrial epithelial cells, treatment with 17β-estradiol (E2) resulted in a 3.8-fold increase in luciferase activity, whereas a 3.2-fold induction was demonstrated for stromal cells. Our Ishikawa cells had less than 100 functional estrogen receptors (ER)/cell and were therefore cotransfected with expression vectors encoding either the α- or the β-form of the human ER. In cells cotransfected with ERα, E2 induced 3.2-fold induction in VEGF-promoter luciferase activity. A 2.3-fold increase was observed in cells cotransfected with ERβ. Through specific deletions, the E2 response was restricted to a single 385-bp PvuII-SstI fragment in the 5′ flanking DNA. Cotransfection of this upstream region with a DNA binding domain ER mutant, or site-directed mutagenesis of a variant ERE within this fragment, resulted in the loss of the E2 response. Electromobility shift assays demonstrated that this same ERE sequence specifically binds estradiol-ER complexes. These studies demonstrate that E2-regulated VEGF gene transcription requires a variant ERE located 1.5 kb upstream from the transcriptional start site. Site-directed mutagenesis of this ERE abrogated E2-induced VEGF gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antitumoral effects that follow the local delivery of the N-terminal fragment of human plasminogen (angiostatin K3) have been studied in two xenograft murine models. Angiostatin delivery was achieved by a defective adenovirus expressing a secretable angiostatin K3 molecule from the cytomegalovirus promoter (AdK3). In in vitro studies, AdK3 selectively inhibited endothelial cell proliferation and disrupted the G2/M transition induced by M-phase-promoting factors. AdK3-infected endothelial cells showed a marked mitosis arrest that correlated with the down-regulation of the M-phase phosphoproteins. A single intratumoral injection of AdK3 into preestablished rat C6 glioma or human MDA-MB-231 breast carcinoma grown in athymic mice was followed by a significant arrest of tumor growth, which was associated with a suppression of neovascularization within and at the vicinity of the tumors. AdK3 therapy also induced a 10-fold increase in apoptotic tumor cells as compared with a control adenovirus. Furthermore, we showed that systemic injection of AdK3 delayed C6 tumor establishment and growth, confirming that angiostatin can function in a paracrin manner. Our data support the concept that targeted antiangiogenesis, using adenovirus-mediated gene transfer, represents a promising alternative strategy for delivering antiangiogenic factors as their bolus injections present unsolved pharmacological problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sequence of events that leads to tumor vessel regression and the functional characteristics of these vessels during hormone–ablation therapy are not known. This is because of the lack of an appropriate animal model and monitoring technology. By using in vivo microscopy and in situ molecular analysis of the androgen-dependent Shionogi carcinoma grown in severe combined immunodeficient mice, we show that castration of these mice leads to tumor regression and a concomitant decrease in vascular endothelial growth factor (VEGF) expression. Androgen withdrawal is known to induce apoptosis in Shionogi tumor cells. Surprisingly, tumor endothelial cells begin to undergo apoptosis before neoplastic cells, and rarefaction of tumor vessels precedes the decrease in tumor size. The regressing vessels begin to exhibit normal phenotype, i.e., lower diameter, tortuosity, vascular permeability, and leukocyte adhesion. Two weeks after castration, a second wave of angiogenesis and tumor growth begins with a concomitant increase in VEGF expression. Because human tumors often relapse following hormone–ablation therapy, our data suggest that these patients may benefit from combined anti-VEGF therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bleeding and delayed healing of ulcers are well recognized clinical problems associated with the use of aspirin and other nonsteroidal antiinflammatory drugs, which have been attributed to their antiaggregatory effects on platelets. We hypothesized that antiplatelet drugs might interfere with gastric ulcer healing by suppressing the release of growth factors, such as vascular endothelial growth factor (VEGF), from platelets. Gastric ulcers were induced in rats by serosal application of acetic acid. Daily oral treatment with vehicle, aspirin, or ticlopidine (an ADP receptor antagonist) was started 3 days later and continued for 1 week. Ulcer induction resulted in a significant increase in serum levels of VEGF and a significant decrease in serum levels of endostatin (an antiangiogenic factor). Although both aspirin and ticlopidine markedly suppressed platelet aggregation, only ticlopidine impaired gastric ulcer healing and angiogenesis as well as reversing the ulcer-associated changes in serum levels of VEGF and endostatin. The effects of ticlopidine on ulcer healing and angiogenesis were mimicked by immunodepletion of circulating platelets, and ticlopidine did not influence ulcer healing when given to thrombocytopenic rats. Incubation of human umbilical vein endothelial cells with serum from ticlopidine-treated rats significantly reduced proliferation and increased apoptosis, effects reversed by an antibody directed against endostatin. Ticlopidine treatment resulted in increased platelet endostatin content and release. These results demonstrate a previously unrecognized contribution of platelets to the regulation of gastric ulcer healing. Such effects likely are mediated through the release from platelets of endostatin and possibly VEGF. As shown with ticlopidine, drugs that influence gastric ulcer healing may do so in part through altering the ability of platelets to release growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined effects of hypoxia and interleukin 1, lipopolysaccharide, or tumor necrosis factor alpha on the expression of genes encoding endothelial constitutive and inducible nitric oxide synthases, endothelin 1, interleukin 6, and interleukin 8 were investigated in human primary pulmonary endothelial cells and whole pulmonary artery organoid cultures. Hypoxia decreased the expression of constitutive endothelial nitric oxide synthase (NOS-3) mRNA and NOS-3 protein as compared with normoxic conditions. The inhibition of expression of NOS-3 corresponded with a reduced production of NO. A combination of hypoxia with bacterial lipopolysaccharide, interleukin 1 beta, or tumor necrosis factor alpha augmented both effects. In contrast, the combination of hypoxia and the inflammatory mediators superinduced the expression of endothelin 1, interleukin 6, and interleukin 8. Here, we have shown that inflammatory mediators aggravate the effect of hypoxia on the down-regulation of NOS-3 and increase the expression of proinflammatory cytokines in human pulmonary endothelial cells and whole pulmonary artery organoid cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1.