935 resultados para HIV virus
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
The laboratory tests currently available to the clinician for day-to-day management of HIV infection are generally limited to the measurement of the viral load and of the CD4 cell count. More recently, analysis of drug resistance and of plasma drug levels have been added to the monitoring armamentarium. There are, however, numerous other techniques currently available to researchers that may in the future be incorporated into clinical routine. These include the analysis of human and viral genetic determinants of disease evolution, detailed analyses of immune recovery and reserve, pharmacogenetic determinants of treatment response, and toxicity. These approaches may in the future provide highly individualized disease management.
Resumo:
BACKGROUND: Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. METHODS: In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. RESULTS: A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9 × 10(-4)). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05-2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06-1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16-1.96), diabetes (OR = 1.66; 95% CI, 1.10-2.49), ≥ 1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06-1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17-2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. CONCLUSIONS: In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD.
Resumo:
BACKGROUND: Adverse effects of combination antiretroviral therapy (CART) commonly result in treatment modification and poor adherence. METHODS: We investigated predictors of toxicity-related treatment modification during the first year of CART in 1318 antiretroviral-naive human immunodeficiency virus (HIV)-infected individuals from the Swiss HIV Cohort Study who began treatment between January 1, 2005, and June 30, 2008. RESULTS: The total rate of treatment modification was 41.5 (95% confidence interval [CI], 37.6-45.8) per 100 person-years. Of these, switches or discontinuations because of drug toxicity occurred at a rate of 22.4 (95% CI, 19.5-25.6) per 100 person-years. The most frequent toxic effects were gastrointestinal tract intolerance (28.9%), hypersensitivity (18.3%), central nervous system adverse events (17.3%), and hepatic events (11.5%). In the multivariate analysis, combined zidovudine and lamivudine (hazard ratio [HR], 2.71 [95% CI, 1.95-3.83]; P < .001), nevirapine (1.95 [1.01-3.81]; P = .050), comedication for an opportunistic infection (2.24 [1.19-4.21]; P = .01), advanced age (1.21 [1.03-1.40] per 10-year increase; P = .02), female sex (1.68 [1.14-2.48]; P = .009), nonwhite ethnicity (1.71 [1.18-2.47]; P = .005), higher baseline CD4 cell count (1.19 [1.10-1.28] per 100/microL increase; P < .001), and HIV-RNA of more than 5.0 log(10) copies/mL (1.47 [1.10-1.97]; P = .009) were associated with higher rates of treatment modification. Almost 90% of individuals with treatment-limiting toxic effects were switched to a new regimen, and 85% achieved virologic suppression to less than 50 copies/mL at 12 months compared with 87% of those continuing CART (P = .56). CONCLUSIONS: Drug toxicity remains a frequent reason for treatment modification; however, it does not affect treatment success. Close monitoring and management of adverse effects and drug-drug interactions are crucial for the durability of CART.
Resumo:
An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.
Resumo:
BACKGROUND: Known antiretroviral restriction factors are encoded by genes that are under positive selection pressure, induced during HIV-1 infection, up-regulated by interferons, and/or interact with viral proteins. To identify potential novel restriction factors, we performed genome-wide scans for human genes sharing molecular and evolutionary signatures of known restriction factors and tested the anti-HIV-1 activity of the most promising candidates. RESULTS: Our analyses identified 30 human genes that share characteristics of known restriction factors. Functional analyses of 27 of these candidates showed that over-expression of a strikingly high proportion of them significantly inhibited HIV-1 without causing cytotoxic effects. Five factors (APOL1, APOL6, CD164, TNFRSF10A, TNFRSF10D) suppressed infectious HIV-1 production in transfected 293T cells by >90% and six additional candidates (FCGR3A, CD3E, OAS1, GBP5, SPN, IFI16) achieved this when the virus was lacking intact accessory vpr, vpu and nef genes. Unexpectedly, over-expression of two factors (IL1A, SP110) significantly increased infectious HIV-1 production. Mechanistic studies suggest that the newly identified potential restriction factors act at different steps of the viral replication cycle, including proviral transcription and production of viral proteins. Finally, we confirmed that mRNA expression of most of these candidate restriction factors in primary CD4+ T cells is significantly increased by type I interferons. CONCLUSIONS: A limited number of human genes share multiple characteristics of genes encoding for known restriction factors. Most of them display anti-retroviral activity in transient transfection assays and are expressed in primary CD4+ T cells.
Resumo:
BACKGROUND: Hepatitis B virus (HBV) genotypes can influence treatment outcome in HBV-monoinfected and human immunodeficiency virus (HIV)/HBV-coinfected patients. Tenofovir disoproxil fumarate (TDF) plays a pivotal role in antiretroviral therapy (ART) of HIV/HBV-coinfected patients. The influence of HBV genotypes on the response to antiviral drugs, particularly TDF, is poorly understood. METHODS: HIV/HBV-co-infected participants with detectable HBV DNA prior to TDF therapy were selected from the Swiss HIV Cohort Study. HBV genotypes were identified and resistance testing was performed prior to antiviral therapy, and in patients with delayed treatment response (>6 months). The efficacy of TDF to suppress HBV (HBV DNA <20 IU/mL) and the influence of HBV genotypes were determined. RESULTS: 143 HIV/HBV-coinfected participants with detectable HBV DNA were identified. The predominant HBV genotypes were A (82 patients, 57 %); and D (35 patients, 24 %); 20 patients (14 %) were infected with multiple genotypes (3 % A + D and 11 % A + G); and genotypes B, C and E were each present in two patients (1 %). TDF completely suppressed HBV DNA in 131 patients (92 %) within 6 months; and in 12 patients (8 %), HBV DNA suppression was delayed. No HBV resistance mutations to TDF were found in patients with delayed response, but all were infected with HBV genotype A (among these, 5 patients with genotype A + G), and all had previously been exposed to lamivudine. CONCLUSION: In HIV/HBV-coinfected patients, infection with multiple HBV genotypes was more frequent than previously reported. The large majority of patients had an undetectable HBV viral load at six months of TDF-containing ART. In patients without viral suppression, no TDF-related resistance mutations were found. The role of specific genotypes and prior lamivudine treatment in the delayed response to TDF warrant further investigation.
Resumo:
To efficiently replicate within mammalian cells, viruses have to manoeuvre through complex host mechanisms, hijacking a network of host proteins to achieve successful propagation. To prevent this invasion, cells have evolved over time to efficiently block the incursing pathogen by direct or indirect targeting. Human immunodeficiency virus (HIV) is a retrovirus of major global public health issue. In the last decade, extensive focus on innate immune proteins has been given, and particularly restriction factors, proteins inhibiting HIV replication by affecting various stages of the viral cycle. Because of the importance of developing new HIV therapies that are associated with reduced side effects and resistances, there is an urge to understand the antiviral response against HIV. Using common features of known restriction factors as a signature to identify new anti-HIV factors, candidates were identified. Particularly multiple members of the apolipoproteins L (APOL) family were found. Cotransfection experiments confirmed very potent inhibitory effects on HIV-1 expression. Further characterization of APOL6, the best candidate, was carried out. APOL6 was not able to inhibit HIV specifically but rather inhibited any gene-encoded DNA that was cotransfected and therefore APOL6 does not classify as a bona fide restriction factor. In addition, we were able to map the activity of APOL6 to the MAD domain and mainly to residue 174. We also found that other members of the family identified in the screen, APOL1 and 3, could have similar mechanism of action as APOL6. Finally, although the complete mechanism of action of APOL6 has yet to be elucidated, it might be blocked during transfections, potentially improving transfection of primary cells. -- Pour se répliquer efficacement dans les cellules de mammifères, les virus doivent manoeuvrer à travers des mécanismes cellulaires complexes et détourner un réseau de protéines de l'hôte. Pour empêcher cette invasion, les gènes de l'hôte ont évolué dans le temps pour cibler efficacement, directement ou indirectement, l'agent pathogène. Le virus de l'immunodéficience humaine (VIH) est un rétrovirus de problème majeur de santé publique mondiale, mais le faible risque de transmission du virus pourrait être expliqué par la présence d'un système antiviral de l'hôte qui, en cas d'échec, conduit à une infection productive. Durant la dernière décennie, il y a eu un intérêt spécial porté sur les protéines immunitaires innées appelé facteurs de restriction présentant des effets inhibiteurs puissants sur la réplication du VIH en affectant différentes étapes du cycle viral. En raison de l'importance de la recherche de nouvelles thérapies anti-VIH associées à des effets secondaires et des résistances réduites comparé aux traitements actuels, il existe un besoin de comprendre la réponse antivirale innée contre le VIH. Basé sur des caractéristiques communes des facteurs de restriction connus, nous avons proposé d'identifier de nouveaux facteurs anti-VIH. Nous avons trouvé une famille de protéines, les apolipoprotéines L (APOL) montrant les effets inhibiteurs très puissants contre l'expression du VIH-1 dans des expériences de co-transfection. Nous avons décidé d'approfondir le rôle de ces protéines dans l'immunité innée et de se concentrer sur le meilleur candidat APOL6. Nous avons en outre établi qu'APOL6 n'a pas d'activité anti-virale spécifique et donc pas classé comme un facteur de bonne foi de restriction. Par ailleurs, APOL6 est capable d'inhiber fortement l'expression de tout Plasmide cotransfecté. En outre, nous avons été en mesure de cartographier l'activité d'APOL6 au domaine MAD et principalement au résidu 174. Nous avons également constaté que d'autres membres de la famille identifiés dans l'étude, APOL1 et 3, pourraient avoir le même mécanisme d'action qu'APOL6. Enfin, bien que le mécanisme d'action complet d'APOL6 reste à être élucidé, il pourrait être d'une importance biotechnologique car il pourrait potentiellement faciliter la transfection de cellules primaires après l'inhibition d'APOL6.
Resumo:
Condomless sex is a key driver of sexually transmitted diseases. In this study, we assess the long-term changes (2000-2013) of the occurrence of condomless sex among human immunodeficiency virus (HIV)-infected individuals enrolled in the Swiss HIV Cohort study. The frequencies with which HIV-infected individuals reported condomless sex were either stable or only weakly increasing for 2000-2008. For 2008-2013, these rates increased significantly for stable relationships among heterosexuals and men who have sex with men (MSM) and for occasional relationships among MSM. Our results highlight the increasing public health challenge posed by condomless sex and show that condomless sex has been increasing even in the most recent years.
Resumo:
Background The effect of maraviroc on the maintenance and the function of HIV-1-specific T cell responses remains unknown. Methods Subjects recently infected with HIV-1 were randomized to receive anti-retroviral treatment with or without maraviroc intensification for 48 weeks, and were monitored up to week 60. PBMC and in vitro-expanded T cells were tested for responses to the entire HIV proteome by ELISpot analyses. Intracellular cytokine staining assays were conducted to monitor the (poly)-functionality of HIV-1-specific T cells. Analyses were performed at baseline and week 24 after treatment start, and at week 60 (3 months after maraviroc discontinuation). Results Maraviroc intensification was associated with a slower decay of virus-specific T cell responses over time compared to the non-intensified regimen in both direct ex-vivo as well as in in-vitro expanded cells. The effector function profiles of virus-specific CD8+ T cells were indistinguishable between the two arms and did not change over time between the groups. Conclusions Maraviroc did not negatively impact any of the measured parameters, but was rather associated with a prolonged maintenance of HIV-1-specific T cell responses. Maraviroc, in addition to its original effect as viral entry inhibitor, may provide an additional benefit on the maintenance of virus-specific T cells which may be especially important for future viral eradication strategies.
Resumo:
Replication of human immunodeficiency virus (HIV) requires base pairing of the reverse transcriptase primer, human tRNA(Lys3), to the viral RNA. Although the major complementary base pairing occurs between the HIV primer binding sequence (PBS) and the tRNA's 3'-terminus, an important discriminatory, secondary contact occurs between the viral A-rich Loop I, 5'-adjacent to the PBS, and the modified, U-rich anticodon domain of tRNA(Lys3). The importance of individual and combined anticodon modifications to the tRNA/HIV-1 Loop I RNA's interaction was determined. The thermal stabilities of variously modified tRNA anticodon region sequences bound to the Loop I of viral sub(sero)types G and B were analyzed and the structure of one duplex containing two modified nucleosides was determined using NMR spectroscopy and restrained molecular dynamics. The modifications 2-thiouridine, s(2)U(34), and pseudouridine, Psi(39), appreciably stabilized the interaction of the anticodon region with the viral subtype G and B RNAs. The structure of the duplex results in two coaxially stacked A-form RNA stems separated by two mismatched base pairs, U(162)*Psi(39) and G(163)*A(38), that maintained a reasonable A-form helix diameter. The tRNA's s(2)U(34) stabilized the interaction between the A-rich HIV Loop I sequence and the U-rich anticodon, whereas the tRNA's Psi(39) stabilized the adjacent mismatched pairs.
Resumo:
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.
Resumo:
Background: Antiretroviral therapy has changed the natural history of human immunodeficiency virus (HIV) infection in developed countries, where it has become a chronic disease. This clinical scenario requires a new approach to simplify follow-up appointments and facilitate access to healthcare professionals. Methodology: We developed a new internet-based home care model covering the entire management of chronic HIV-infected patients. This was called Virtual Hospital. We report the results of a prospective randomised study performed over two years, comparing standard care received by HIV-infected patients with Virtual Hospital care. HIV-infected patients with access to a computer and broadband were randomised to be monitored either through Virtual Hospital (Arm I) or through standard care at the day hospital (Arm II). After one year of follow up, patients switched their care to the other arm. Virtual Hospital offered four main services: Virtual Consultations, Telepharmacy, Virtual Library and Virtual Community. A technical and clinical evaluation of Virtual Hospital was carried out. Findings: Of the 83 randomised patients, 42 were monitored during the first year through Virtual Hospital (Arm I) and 41 through standard care (Arm II). Baseline characteristics of patients were similar in the two arms. The level of technical satisfaction with the virtual system was high: 85% of patients considered that Virtual Hospital improved their access to clinical data and they felt comfortable with the videoconference system. Neither clinical parameters [level of CD4 + T lymphocytes, proportion of patients with an undetectable level of viral load (p = 0.21) and compliance levels 90% (p = 0.58)] nor the evaluation of quality of life or psychological questionnaires changed significantly between the two types of care. Conclusions: Virtual Hospital is a feasible and safe tool for the multidisciplinary home care of chronic HIV patients. Telemedicine should be considered as an appropriate support service for the management of chronic HIV infection.
Resumo:
The cellular DNA repair hRAD51 protein has been shown to restrict HIV-1 integration both in vitro and in vivo. To investigate its regulatory functions, we performed a pharmacological analysis of the retroviral integration modulation by hRAD51. We found that, in vitro, chemical activation of hRAD51 stimulates its integration inhibitory properties, whereas inhibition of hRAD51 decreases the integration restriction, indicating that the modulation of HIV-1 integration depends on the hRAD51 recombinase activity. Cellular analyses demonstrated that cells exhibiting high hRAD51 levels prior to de novo infection are more resistant to integration. On the other hand, when hRAD51 was activated during integration, cells were more permissive. Altogether, these data establish the functional link between hRAD51 activity and HIV-1 integration. Our results highlight the multiple and opposite effects of the recombinase during integration and provide new insights into the cellular regulation of HIV-1 replication.
Resumo:
To evaluate antibody specificities induced by simian immunodeficiency virus (SIV) versus human immunodeficiency virus type 1 (HIV-1) envelope antigens in nonhuman primate (NHP), we profiled binding antibody responses to linear epitopes in NHP studies with HIV-1 or SIV immunogens. We found that, overall, HIV-1 Env IgG responses were dominated by V3, with the notable exception of the responses to the vaccine strain A244 Env that were dominated by V2, whereas the anti-SIVmac239 Env responses were dominated by V2 regardless of the vaccine regimen.