751 resultados para HAPLOTYPE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research characterized a serologically indistinguishable form of HLA-DR1 that: (1) cannot stimulate some DR1-restricted or specific T-lymphocyte clones; (2) displays an unusual electrophoretic pattern on two dimensional gels; and (3) is marked by a polymorphic restriction site of the alpha gene. Inefficient stimulation of some DR1-restricted clones was a property of DR1$\sp{+}$ cells that shared HLA-B14 on the same haplotype and/or were carriers of 21-hydroxylase (21-OH) deficiency. Nonclassical 21-OH deficiency frequently demonstrates genetic linkage with HLA-B14;DR1 haplotypes and associates with duplications of C4B and one 21-OH gene. Cells having both stimulatory (DR1$\sb{\rm n}$) and nonstimulatory (DR1$\sb{\rm x}$) parental haplotypes did not mediate proliferation of these clones. However, heterozygous DR1$\sb{\rm x}$, 2 and DR1$\sb{\rm x}$, 7 cells were efficient stimulators of DR2 and DR7 specific clones, respectively, suggesting that a trans acting factor may modify DR1 alleles or products to yield a dominant DR1$\sb{\rm x}$ phenotype. Incompetent stimulator populations did not secrete an intercellular soluble or contact dependent suppressor factor nor did they express interleukin-2 receptors competing for T-cell growth factors. Two dimensional gel analysis of anti-DR immunoprecipitates revealed, in addition to normal DR$\alpha$ and DR$\beta$ chains, a 50kD species from DR1$\sb{\rm x}$ but not from the majority of DR1$\sb{\rm n}$ or non-DR1 cells. The 50kD structure was stable under reducing conditions in SDS and urea, had antigenic homology with DR, and dissociated after boiling into 34kD and 28kD peptide chains apparently identical with DR$\alpha$ and DR$\beta$ as shown by limited digest peptide maps. N-linked glycosylation and sialation of DRgp50 appeared to be unchanged from normal DR$\alpha$ and DR$\beta$. Bg1II digestion and $DR\alpha$ probing of DR1$\sb{\rm x}$ genomic DNA revealed a 4.5kb fragment while DR1$\sb{\rm n}$ DNA yielded 3.8 and 0.76kb fragments; all restriction sites mapped to the 3$\sp\prime$ untranslated region of $DR\alpha$. Collectively, these data suggest that DRgp50 represents a novel combinatorial association between constitutive chains of DR that may interfere with or compete for normal T cell receptor recognition of DR1 as both an alloantigen and restricting element. Furthermore, extensive chromosomal abnormalities previously mapped to the class III region of B14;DR1 haplotypes may extend into the adjacent class II region with consequent intrusion on immune function. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Alteration of the surface glycosylation pattern on malignant cells potentially affects tumor immunity by directly influencing interactions with glycan-binding proteins (lectins) on the surface of immunomodulatory cells. The sialic acid-binding Ig-like lectins Siglec-7 and -9 are MHC class I-independent inhibitory receptors on human NK cells that recognize sialic acid-containing carbohydrates. Here, we found that the presence of Siglec-9 defined a subset of cytotoxic NK cells with a mature phenotype and enhanced chemotactic potential. Interestingly, this Siglec-9+ NK cell population was reduced in the peripheral blood of cancer patients. Broad analysis of primary tumor samples revealed that ligands of Siglec-7 and -9 were expressed on human cancer cells of different histological types. Expression of Siglec-7 and -9 ligands was associated with susceptibility of NK cell-sensitive tumor cells and, unexpectedly, of presumably NK cell-resistant tumor cells to NK cell-mediated cytotoxicity. Together, these observations have direct implications for NK cell-based therapies and highlight the requirement to consider both MHC class I haplotype and tumor-specific glycosylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dandy-Walker-like malformation (DWLM) is the result of aberrant brain development and mainly characterized by cerebellar hypoplasia. DWLM affected dogs display a non-progressive cerebellar ataxia. Several DWLM cases were recently observed in the Eurasier dog breed, which strongly suggested a monogenic autosomal recessive inheritance in this breed. We performed a genome-wide association study (GWAS) with 9 cases and 11 controls and found the best association of DWLM with markers on chromosome 1. Subsequent homozygosity mapping confirmed that all 9 cases were homozygous for a shared haplotype in this region, which delineated a critical interval of 3.35 Mb. We sequenced the genome of an affected Eurasier and compared it with the Boxer reference genome and 47 control genomes of dogs from other breeds. This analysis revealed 4 private non-synonymous variants in the critical interval of the affected Eurasier. We genotyped these variants in additional dogs and found perfect association for only one of these variants, a single base deletion in the VLDLR gene encoding the very low density lipoprotein receptor. This variant, VLDLR:c.1713delC is predicted to cause a frameshift and premature stop codon (p.W572Gfs*10). Variants in the VLDLR gene have been shown to cause congenital cerebellar ataxia and mental retardation in human patients and Vldlr knockout mice also display an ataxia phenotype. Our combined genetic data together with the functional knowledge on the VLDLR gene from other species thus strongly suggest that VLDLR:c.1713delC is indeed causing DWLM in Eurasier dogs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the clinical relevance of dihydropyrimidine dehydrogenase gene (DPYD) variants to predict severe early-onset fluoropyrimidine (FP) toxicity, in particular of a recently discovered haplotype hapB3 and a linked deep intronic splice site mutation c.1129-5923C>G. Selected regions of DPYD were sequenced in prospectively collected germline DNA of 500 patients receiving FP-based chemotherapy. Associations of DPYD variants and haplotypes with hematologic, gastrointestinal, infectious, and dermatologic toxicity in therapy cycles 1-2 and resulting FP-dose interventions (dose reduction, therapy delay or cessation) were analyzed accounting for clinical and demographic covariates. Fifteen additional cases with toxicity-related therapy delay or cessation were retrospectively examined for risk variants. The association of c.1129-5923C>G/hapB3 (4.6% carrier frequency) with severe toxicity was replicated in an independent prospective cohort. Overall, c.1129-5923G/hapB3 carriers showed a relative risk of 3.74 (RR, 95% CI = 2.30-6.09, p = 2 × 10(-5)) for severe toxicity (grades 3-5). Of 31 risk variant carriers (c.1129-5923C>G/hapB3, c.1679T>G, c.1905+1G>A or c.2846A>T), 11 (all with c.1129-5923C>G/hapB3) experienced severe toxicity (15% of 72 cases, RR = 2.73, 95% CI = 1.61-4.63, p = 5 × 10(-6)), and 16 carriers (55%) required FP-dose interventions. Seven of the 15 (47%) retrospective cases carried a risk variant. The c.1129-5923C>G/hapB3 variant is a major contributor to severe early-onset FP toxicity in Caucasian patients. This variant may substantially improve the identification of patients at risk of FP toxicity compared to established DPYD risk variants (c.1905+1G>A, c.1679T>G and c.2846A>T). Pre-therapeutic DPYD testing may prevent 20-30% of life-threatening or lethal episodes of FP toxicity in Caucasian patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herbivore-induced volatiles play an important role in the indirect defense of plants. After herbivore damage, volatiles are released from the plant and can attract herbivore enemies that protect the plant from additional damage. The herbivore-induced volatile blend is complex and usually consists of mono- and sesquiterpenes, aromatic compounds, and indole. Although these classes of compounds are generally produced at different times after herbivore damage, the release of the terpene (E)-β-caryophyllene and the aromatic ester methyl anthranilate appear to be tightly coordinated. We have studied the herbivore induction patterns of two terpene synthases from Zea mays L. (Poaceae), TPS23 and TPS10, as well as S-adenosyl-L-methionine:anthranilic acid carboxyl methyltransferases (AAMT1), which are critical for the production of terpenes and anthranilate compounds, respectively. The transcript levels of tps23 and aamt1 displayed the same kinetics after damage by the larvae of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), and showed the same organ-specific and haplotype-specific expression patterns. Despite its close functional relation to TPS23, the terpene synthase TPS10 is not expressed in roots and does not display the haplotype-specific expression pattern. The results indicate that the same JA-mediated signaling cascade maycontrol the production of both the terpene (E)-β-caryophyllene and aromatic ester methyl anthranilate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunoglobulin A deficiency (IgAD) is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS) to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei) identified 35 genomic loci suggestively associated (p <0.0005) to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9) were genome-wide significantly associated (p <0.0002) with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005) to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leopard Complex spotting occurs in several breeds of horses and is caused by an incompletely dominant allele (LP). Homozygosity for LP is also associated with congenital stationary night blindness (CSNB) in Appaloosa horses. Previously, LP was mapped to a 6 cm region on ECA1 containing the candidate gene TRPM1 (Transient Receptor Potential Cation Channel, Subfamily M, Member 1) and decreased expression of this gene, measured by qRT-PCR, was identified as the likely cause of both spotting and ocular phenotypes. This study describes investigations for a mutation causing or associated with the Leopard Complex and CSNB phenotype in horses. Re-sequencing of the gene and associated splice sites within the 105 624 bp genomic region of TRPM1 led to the discovery of 18 SNPs. Most of the SNPs did not have a predictive value for the presence of LP. However, one SNP (ECA1:108,249,293 C>T) found within intron 11 had a strong (P < 0.0005), but not complete, association with LP and CSNB and thus is a good marker but unlikely to be causative. To further localize the association, 70 SNPs spanning over two Mb including the TRPM1 gene were genotyped in 192 horses from three different breeds segregating for LP. A single 173 kb haplotype associated with LP and CSNB (ECA1: 108,197,355- 108,370,150) was identified. Illumina sequencing of 300 kb surrounding this haplotype revealed 57 SNP variants. Based on their localization within expressed sequences or regions of high sequence conservation across mammals, six of these SNPs were considered to be the most likely candidate mutations. While the precise function of TRPM1 remains to be elucidated, this work solidifies its functional role in both pigmentation and night vision. Further, this work has identified several potential regulatory elements of the TRPM1 gene that should be investigated further in this and other species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypothyroidism is a complex clinical condition found in both humans and dogs, thought to be caused by a combination of genetic and environmental factors. In this study we present a multi-breed analysis of predisposing genetic risk factors for hypothyroidism in dogs using three high-risk breeds-the Gordon Setter, Hovawart and the Rhodesian Ridgeback. Using a genome-wide association approach and meta-analysis, we identified a major hypothyroidism risk locus shared by these breeds on chromosome 12 (p = 2.1x10-11). Further characterisation of the candidate region revealed a shared ~167 kb risk haplotype (4,915,018-5,081,823 bp), tagged by two SNPs in almost complete linkage disequilibrium. This breed-shared risk haplotype includes three genes (LHFPL5, SRPK1 and SLC26A8) and does not extend to the dog leukocyte antigen (DLA) class II gene cluster located in the vicinity. These three genes have not been identified as candidate genes for hypothyroid disease previously, but have functions that could potentially contribute to the development of the disease. Our results implicate the potential involvement of novel genes and pathways for the development of canine hypothyroidism, raising new possibilities for screening, breeding programmes and treatments in dogs. This study may also contribute to our understanding of the genetic etiology of human hypothyroid disease, which is one of the most common endocrine disorders in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification of quantitative trait loci (QTL) such as height and their underlying causative variants is still challenging and often requires large sample sizes. In humans hundreds of loci with small effects control the heritable portion of height variability. In domestic animals, typically only a few loci with comparatively large effects explain a major fraction of the heritability. We investigated height at withers in Shetland ponies and mapped a QTL to ECA 6 by genome-wide association (GWAS) using a small cohort of only 48 animals and the Illumina equine SNP70 BeadChip. Fine-mapping revealed a shared haplotype block of 793 kb in small Shetland ponies. The HMGA2 gene, known to be associated with height in horses and many other species, was located in the associated haplotype. After closing a gap in the equine reference genome we identified a non-synonymous variant in the first exon of HMGA2 in small Shetland ponies. The variant was predicted to affect the functionally important first AT-hook DNA binding domain of the HMGA2 protein (c.83G>A; p.G28E). We assessed the functional impact and found impaired DNA binding of a peptide with the mutant sequence in an electrophoretic mobility shift assay. This suggests that the HMGA2 variant also affects DNA binding in vivo and thus leads to reduced growth and a smaller stature in Shetland ponies. The identified HMGA2 variant also segregates in several other pony breeds but was not found in regular-sized horse breeds. We therefore conclude that we identified a quantitative trait nucleotide for height in horses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Known genetic variants with reference to preeclampsia only explain a proportion of the heritable contribution to the development of this condition. The association between preeclampsia and the risk of cardiovascular disease later in life has encouraged the study of genetic variants important in thrombosis and vascular inflammation also in relation to preeclampsia. The von Willebrand factor-cleaving protease, ADAMTS13, plays an important role in micro vascular thrombosis, and partial deficiencies of this enzyme have been observed in association with cardiovascular disease and preeclampsia. However, it remains unknown whether decreased ADAMTS13 levels represent a cause or an effect of the event in placental and cardiovascular disease. METHODS We studied the distribution of three functional genetic variants of ADAMTS13, c.1852C>G (rs28647808), c.4143_4144dupA (rs387906343), and c.3178C>T (rs142572218) in women with preeclampsia and their controls in a nested case-control study from the second Nord-Trøndelag Health Study (HUNT2). We also studied the association between ADAMTS13 activity and preeclampsia, in serum samples procured unrelated in time of the preeclamptic pregnancy. RESULTS No differences were observed in genotype, allele or haplotype frequencies of the different ADAMTS13 variants when comparing cases and controls, and no association to preeclampsia was found with lower levels of ADAMTS13 activity. CONCLUSION Our findings indicate that ADAMTS13 variants and ADAMTS13 activity do not contribute to an increased risk of preeclampsia in the general population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a genetically heterogeneous group of retinal degenerations that affects over one million people worldwide. To date, 11 autosomal dominant, 13 autosomal recessive, and 5 X-linked forms of retinitis pigmentosa have been identified through linkage analysis, but the disease-causing genes and mutations have been found for only half of these loci. My research uses a positional candidate cloning approach to identify the gene and mutations responsible for one type of autosomal dominant retinitis pigmentosa, RP10. The premise is that identifying the genes and mutations responsible for disease will provide insight into disease mechanisms and provide treatment options. Previous research mapped the RP10 locus to a 5cM region on chromosome 7q31 between markers D7S686 and D7S530. Linkage and fine-point haplotype analysis was used to reduce and refine the RP10 disease interval to a 4cM region located between D7S2471 and a new marker located 45,000bp telomeric of D7S461. In order to identify genes located in the RP10 interval, an extensive EST map was created of this region. Five EST clusters from this map were analyzed to determine if mutations in these genes cause the RP10 form of retinitis pigmentosa. The genomic structure of a known metabotrophic glutamate receptor, GRMS8, was determined first. DNA sequencing of GRM8 in RP10 family members did not identify any disease-causing mutations. Four other EST clusters (A170, A173, A189, and A258) were characterized and determined to be part of the same gene, UBNL1 (ubinuclein-like 1). The full-length mRNA sequence and genomic structure of UBNL1 was determined and then screened in patients. No disease-causing mutations were identified in any of the RP10 family members tested. Recent data made available with the release of the public and Celera genome assemblies indicates that UBNL1 is outside of the RP10 disease region. Despite this complication, characterization of UBNL1 is still important in the understanding of normal visual processes and it is possible that mutations in UBNL1 could cause other forms of retinopathy. The EST map and list of RP10 candidates will continue to aid others in the search for the RP10 gene and mutations. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With hundreds of single nucleotide polymorphisms (SNPs) in a candidate gene and millions of SNPs across the genome, selecting an informative subset of SNPs to maximize the ability to detect genotype-phenotype association is of great interest and importance. In addition, with a large number of SNPs, analytic methods are needed that allow investigators to control the false positive rate resulting from large numbers of SNP genotype-phenotype analyses. This dissertation uses simulated data to explore methods for selecting SNPs for genotype-phenotype association studies. I examined the pattern of linkage disequilibrium (LD) across a candidate gene region and used this pattern to aid in localizing a disease-influencing mutation. The results indicate that the r2 measure of linkage disequilibrium is preferred over the common D′ measure for use in genotype-phenotype association studies. Using step-wise linear regression, the best predictor of the quantitative trait was not usually the single functional mutation. Rather it was a SNP that was in high linkage disequilibrium with the functional mutation. Next, I compared three strategies for selecting SNPs for application to phenotype association studies: based on measures of linkage disequilibrium, based on a measure of haplotype diversity, and random selection. The results demonstrate that SNPs selected based on maximum haplotype diversity are more informative and yield higher power than randomly selected SNPs or SNPs selected based on low pair-wise LD. The data also indicate that for genes with small contribution to the phenotype, it is more prudent for investigators to increase their sample size than to continuously increase the number of SNPs in order to improve statistical power. When typing large numbers of SNPs, researchers are faced with the challenge of utilizing an appropriate statistical method that controls the type I error rate while maintaining adequate power. We show that an empirical genotype based multi-locus global test that uses permutation testing to investigate the null distribution of the maximum test statistic maintains a desired overall type I error rate while not overly sacrificing statistical power. The results also show that when the penetrance model is simple the multi-locus global test does as well or better than the haplotype analysis. However, for more complex models, haplotype analyses offer advantages. The results of this dissertation will be of utility to human geneticists designing large-scale multi-locus genotype-phenotype association studies. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apolipoprotein E (ApoE) plays a major role in the metabolism of high density and low density lipoproteins (HDL and LDL). Its common protein isoforms (E2, E3, E4) are risk factors for coronary artery disease (CAD) and explain between 16 to 23% of the inter-individual variation in plasma apoE levels. Linkage analysis has been completed for plasma apoE levels in the GENOA study (Genetic Epidemiology Network of Atherosclerosis). After stratification of the population by lipoprotein levels and body mass index (BMI) to create more homogeneity with regard to biological context for apoE levels, Hispanic families showed significant linkage on chromosome 17q for two strata (LOD=2.93 at 104 cM for a low cholesterol group, LOD=3.04 at 111 cM for a low cholesterol, high HDLC group). Replication of 17q linkage was observed for apoB and apoE levels in the unstratified Hispanic and African-American populations, and for apoE levels in African-American families. Replication of this 17q linkage in different populations and strata provides strong support for the presence of gene(s) in this region with significant roles in the determination of inter-individual variation in plasma apoE levels. Through a positional and functional candidate gene approach, ten genes were identified in the 17q linked region, and 62 polymorphisms in these genes were genotyped in the GENOA families. Association analysis was performed with FBAT, GEE, and variance-component based tests followed by conditional linkage analysis. Association studies with partial coverage of TagSNPs in the gene coding for apolipoprotein H (APOH) were performed, and significant results were found for 2 SNPs (APOH_20951 and APOH_05407) in the Hispanic low cholesterol strata accounting for 3.49% of the inter-individual variation in plasma apoE levels. Among the other candidate genes, we identified a haplotype block in the ACE1 gene that contains two major haplotypes associated with apoE levels as well as total cholesterol, apoB and LDLC levels in the unstratified Hispanic population. Identifying genes responsible for the remaining 60% of inter-individual variation in plasma apoE level, will yield new insights into the understanding of genetic interactions involved in the lipid metabolism, and a more precise understanding of the risk factors leading to CAD. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertension is usually defined as having values of systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg. Hypertension is one of the main adverse effects of glucocorticoid on the cardiovascular system. Glucocorticoids are essential hormones, secreted from adrenal glands in circadian fashion. Glucocorticoid's effect on blood pressure is conveyed by the glucocorticoid receptor (NR3C1), an omnipresent nuclear transcription factor. Although polymorphisms in this gene have long been implicated to be a causal factor for cardiovascular diseases such as hypertension, no study has yet thoroughly interrogated the gene's polymorphisms for their effect on blood pressure levels. Therefore, I have first resequenced ∼30 kb of the gene, encompassing all exons, promoter regions, 5'/3' UTRs as well as at least 1.5 kb of the gene's flanking regions from 114 chromosome 5 monosomic cell lines, comprised of three major American ethnic groups—European American, African American and Mexican American. I observed 115 polymorphisms and 14 common molecularly phased haplotypes. A subset of markers was chosen for genotyping study populations of GENOA (Genetic Epidemiology Network of Atherosclerosis; 1022 non-Hispanic whites, 1228 African Americans and 954 Mexican Americans). Since these study populations include sibships, the family-based association test was performed on 4 blood pressure-related quantitative variables—pulse, systolic blood pressure, diastolic blood pressure and mean arterial pressure. Using these analyses, multiple correlated SNPs are significantly protective against high systolic blood pressure in non-Hispanic whites, which includes rsb198, a SNP formerly associated with beneficial body compositions. Haplotype association analysis also supports this finding and all p-values remained significant after permutation tests. I therefore conclude that multiple correlated SNPs on the gene may confer protection against high blood pressure in non-Hispanic whites. ^