931 resultados para Growth-inhibition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate carcinoma is the second leading cause of death from malignancy in men in the United States. Prostate cancer cells express type I insulin-like growth factor receptor (IGF-IR) and prostate cancer selectively metastazises to bone, which is an environment rich in insulin-like growth factors (IGFs), thereby supporting a paracrine action for cancer cell proliferation. We asked whether the IGF-IR is coupled to tumorigenicity and invasion of prostate cancer. When rat prostate adenocarcinoma cells (PA-III) were stably transfected with an antisense IGF-IR expression construct containing the ZnSO4-inducible metallothionein-1 transcriptional promoter, the transfectants expressed high levels of IGF-IR antisense RNA after induction with ZnSO4, which resulted in dramatically reduced levels of endogenous IGF-IR mRNA. A significant reduction in expression both of tissue-type plasminogen activator and of urokinase-type plasminogen activator occurred in PA-III cells accompanying inhibition of IGF-IR. Subcutaneous injection of either nontransfected PA-III or PA-III cells transfected with vector minus the IGF-IR insert into nude mice resulted in large tumors after 4 weeks. However, mice injected with IGF-IR antisense-transfected PA-III cells either developed tumors 90% smaller than controls or remained tumor-free after 60 days of observation. When control-transfected PA-III cells were inoculated over the abraded calvaria of nude mice, large tumors formed with invasion of tumor cells into the brain parenchyma. In contrast, IGF-IR antisense transfectants formed significantly smaller tumors with no infiltration into brain. These results indicate an important role for the IGF/IGF-IR pathway in metastasis and provide a basis for targeting IGF-IR as a potential treatment for prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galectin-3 is a member (if a large family of beta-galactoside-binding animal lectins. It has been shown that the expression of galectin-3 is upregulated in proliferating cells, suggesting a possible role for this lectin in regulation of cell growth. Previously, we have shown that T cells infected with human T-cell leukemia virus type I express high levels of galectin-3, in contrast to uninfected cells, which do not express detectable amounts of this protein. In this study, we examined growth properties of human leukemia T cells transfected with galectin-3 cDNA, and thus constitutively overexpressing this lectin. Transfectants expressing galectin-3 displayed higher growth rates than control transfectants, which do not express this lectin. Furthermore, galectin-3 expression in these cells confers resistance to apoptosis induced by anti-Fas antibody and staurosporine. Galectin-3 was found to have significant sequence similarity with Bcl-2, a well-characterized suppressor of apoptosis. In particular, the lectin contains the NWGR motif that is highly conserved among members of the Bcl-2 family and shown to be critical for the apoptosis-suppressing activity. We further demonstrated that galectin-3 interacts with Bc1-2 in a lactose-inhibitable manner. We conclude that galectin-3 is a regulator of cell growth and apoptosis and it may function through a cell death inhibition pathway that involves Bcl-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nerve growth factor (NGF) is well characterized for its neurotrophic actions on peripheral sensory and sympathetic neurons and on central cholinergic neurons of the basal forebrain. Recent evidence, however, has shown high levels of NGF to be present in a variety of biological fluids after inflammatory and autoimmune responses, suggesting that NGF is a mediator of immune interactions. Increased NGF serum levels have been reported in both humans and experimental animal models of psychological and physical stress, thus implicating NGF in neuroendocrine interactions as well. The possible source(s) and the regulatory mechanisms involved in the control of serum NGF levels, however, still remain to be elucidated. We now report the presence of both NGF gene transcripts and protein in the anterior pituitary. Immunofluorescence analysis indicated that hypophysial NGF is selectively localized in mammotroph cells and stored in secretory granules. NGF is cosecreted with prolactin from mammotroph cells by a neurotransmitter-dependent mechanism that can be pharmacologically regulated. Activation of the dopamine D2 receptor subtype, which physiologically controls prolactin release, resulted in a complete inhibition of vasoactive intestinal peptide-stimulated NGF secretion in vitro, whereas the specific D2 antagonist (-)-sulpiride stimulated NGF secretion in vivo, suggesting that the anterior pituitary is a possible source of circulating NGF. Given the increased NGF serum levels in stressful conditions and the newly recognized immunoregulatory function of this protein, NGF, together with prolactin, may thus be envisaged as an immunological alerting signal under neuronal control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the effect of apoptosis on gene amplification, we have constructed HeLa S3 cell lines in which the expression of bcl-2 (BCL2) can be controlled by tetracycline in the growth medium. Induction of Bcl-2 expression caused a temporary delay of apoptosis and resulted in roughly a 3-fold increase in the frequency of resistant colonies when cells were selected with trimetrexate. This resistance was due to amplification of the dihydrofolate reductase gene. Cells grown out of the pooled resistant colonies retained the same level of resistance to trimetrexate whether Bcl-2 was induced or repressed, consistent with the theory that Bcl-2 functions by facilitating gene amplification, rather than being the resistance mechanism per se. Pretreating cells with aphidicolin is another method to increase gene amplification frequency. When Bcl-2-expressing cells were pretreated with aphidicolin, the resulting increase in gene amplification frequency was approximately the product of the increases caused by aphidicolin pretreatment or Bcl-2 expression alone, indicating that Bcl-2 increases gene amplification through a mechanism independent of that of aphidicolin pretreatment. These results are consistent with the concept that gene amplification occurs at a higher frequency during drug-induced cell cycle perturbation. Bcl-2 evidently increases the number of selected amplified colonies by prolonging cell survival during the perturbation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously demonstrated that the putative oncogene AKT2 is amplified and overexpressed in some human ovarian carcinomas. We have now identified amplification of AKT2 in approximately 10% of pancreatic carcinomas (2 of 18 cell lines and 1 of 10 primary tumor specimens). The two cell lines with altered AKT2 (PANC1 and ASPC1) exhibited 30-fold and 50-fold amplification of AKT2, respectively, and highly elevated levels of AKT2 RNA and protein. PANC1 cells were transfected with antisense AKT2, and several clones were established after G418 selection. The expression of AKT2 protein in these clones was greatly decreased by the antisense RNA. Furthermore, tumorigenicity in nude mice was markedly reduced in PANC1 cells expressing antisense AKT2 RNA. To examine further whether overexpression of AKT2 plays a significant role in pancreatic tumorigenesis, PANC1 cells and ASPC1 cells, as well as pancreatic carcinoma cells that do not overexpress AKT2 (COLO 357), were transfected with antisense AKT2, and their growth and invasiveness were characterized by a rat tracheal xenotransplant assay. ASPC1 and PANC1 cells expressing antisense AKT2 RNA remained confined to the tracheal lumen, whereas the respective parental cells invaded the tracheal wall. In contrast, no difference was seen in the growth pattern between parental and antisense-treated COLO 357 cells. These data suggest that overexpression of AKT2 contributes to the malignant phenotype of a subset of human ductal pancreatic cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Like human gliomas, the rat 9L gliosarcoma secretes the immunosuppressive transforming growth factor beta (TGF-beta). Using the 9L model, we tested our hypothesis that genetic modification of glioma cells to block TGF-beta expression may enhance their immunogenicity and make them more suitable for active tumor immunotherapy. Subcutaneous immunizations of tumor-bearing animals with 9L cells genetically modified to inhibit TGF-beta expression with an antisense plasmid vector resulted in a significantly higher number of animals surviving for 12 weeks (11/11, 100%) compared to immunizations with control vector-modified 9L cells (2/15, 13%) or 9L cells transduced with an interleukin 2 retroviral vector (3/10, 30%) (P < 0.001 for both comparisons). Histologic evaluation of implantation sites 12 weeks after treatment revealed no evidence of residual tumor. In vitro tumor cytotoxicity assays with lymph node effector cells revealed a 3- to 4-fold increase in lytic activity for the animals immunized with TGF-beta antisense-modified tumor cells compared to immunizations with control vector or interleukin 2 gene-modified tumor cells. These results indicate that inhibition of TGF-beta expression significantly enhances tumor-cell immunogenicity and supports future clinical evaluation of TGF-beta antisense gene therapy for TGF-beta-expressing tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dihydrodipicolinate synthase (DHPS; EC 4.2.1.52) catalyzes the first step in biosynthesis of lysine in plants and bacteria. DHPS in plants is highly sensitive to end-product inhibition by lysine and, therefore, has an important role in regulating metabolite flux into lysine. To better understand the feedback inhibition properties of the plant enzyme, we transformed a maize cDNA for lysine-sensitive DHPS into an Escherichia coli strain lacking DHPS activity. Cells were mutagenized with ethylmethanesulfonate, and potential DHPS mutants were selected by growth on minimal medium containing the inhibitory lysine analogue S-2-aminoethyl-L-cysteine. DHPS assays identified surviving colonies expressing lysine-insensitive DHPS activity. Ten single-base-pair mutations were identified in the maize DHPS cDNA sequence; these mutations were specific to one of three amino acid residues (amino acids 157, 162, and 166) localized within a short region of the polypeptide. No other mutations were present in the remaining DHPS cDNA sequence, indicating that altering only one of the three residues suffices to eliminate lysine inhibition of maize DHPS. Identification of these specific mutations that change the highly sensitive maize DHPS to a lysine-insensitive isoform will help resolve the lysine-binding mechanism and the resultant conformational changes involved in inhibition of DHPS activity. The plant-derived mutant DHPS genes may also be used to improve nutritional quality of maize or other cereal grains that have inadequate lysine content when fed to animals such as poultry, swine, or humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied inhibition of growth of the malaria parasite Plasmodium falciparum in in vitro culture using antisense (AS) oligodeoxynucleotides (ODNs) against different target genes. W2 and W2mef strains of drug-resistant parasites were exposed to AS ODNs over 48 hr, and growth was determined by microscopic examination and [3H]hypoxanthine incorporation. At ODN concentrations of 1 microM, phosphorothioate (PS) ODNs inhibited growth in a target-independent manner. However, between 0.5 and 0.005 microM, ODNs against dihydrofolate reductase, dihydropteroate synthetase, ribonucleotide reductase, the schizont multigene family, and erythrocyte binding antigen EBA175 significantly inhibited growth compared with a PS AS ODN against human immunodeficiency virus, two AS ODNs containing eight mismatches, or the sense strand controls (P < 0.0001). The IC50 was approximately 0.05 microM, whereas that for non-sequence-specific controls was 15-fold higher. PS AS ODNs against DNA polymerase alpha showed less activity than that for other targets, whereas a single AS ODN against triose-phosphate isomerase did not differ significantly from controls. We conclude that at concentrations below 0.5 microM, PS AS ODNs targeted against several malarial genes significantly inhibit growth of drug-resistant parasites in a nucleotide sequence-dependent manner. This technology represents an alternative method for identifying malarial genes as potential drug targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular desensitization is believed to be important for growth control but direct evidence is lacking. In the current study we compared effects of wild-type and down-regulation-resistant mutant m3 muscarinic receptors on Chinese hamster ovary (CHO-K1) cell desensitization, proliferation, and transformation. We found that down-regulation of m3 muscarinic acetylcholine receptors was the principal mechanism of desensitization of receptor-activated inositol phosphate phospholipid hydrolysis in these cells. Activation of wild-type and mutant receptors inhibited anchorage-independent growth as assayed by colony formation in agar. However, the potency for inhibition of anchorage-independent growth was greater for cells expressing the mutant receptor. Activation of either receptor also initially inhibited anchorage-dependent cell proliferation in randomly growing populations. Rates of DNA synthesis and cell division were profoundly reduced by carbachol in cells expressing either receptor at early time points. Analysis of cell cycle parameters indicated that cell cycle progression was inhibited at transitions from G1 to S and G2/M to G1 phases. However, mutant receptor effects on anchorage-dependent growth were sustained, whereas wild-type receptor effects were transient. Thus, receptor down-regulation restored cell cycle progression. In contrast, activation of either receptor blocked entry into the cell cycle from quiescence, and this response was not reduced by receptor down-regulation. Therefore, activation of m3 muscarinic acetylcholine receptors inhibited CHO cell anchorage-dependent and -independent growth. In anchored cells carbachol inhibited the cell cycle at three distinct points. Inhibitions at two of these points were eliminated by wild-type receptor down-regulation while the other was not. These results directly demonstrate that desensitization mechanisms can act as principal determinants of cellular growth responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms by which insulin-like growth factors (IGFs) can be both mitogenic and differentiation-promoting in skeletal myoblasts are unclear because these two processes are believed to be mutually exclusive in this tissue. The phosphorylation state of the ubiquitous nuclear retinoblastoma protein (Rb) plays an important role in determining whether myoblasts proliferate or differentiate: Phosphorylated Rb promotes mitogenesis, whereas un- (or hypo-) phosphorylated Rb promotes cell cycle exit and differentiation. We hypothesized that IGFs might affect the fate of myoblasts by regulating the phosphorylation of Rb. Although long-term IGF treatment is known to stimulate differentiation, we find that IGFs act initially to inhibit differentiation and are exclusively mitogenic. These early effects of IGFs are associated with maintenance of Rb phosphorylation typical of proliferating cells; upregulation of the gene expression of cyclin-dependent kinase 4 and cyclin D1, components of a holoenzyme that plays a principal role in mediating Rb phosphorylation; and marked inhibition of the gene expression of myogenin, a member of the MyoD family of skeletal muscle-specific transcription factors that is essential in muscle differentiation. We also find that IGF-induced inhibition of differentiation occurs through a process that is independent of its mitogenic effects. We demonstrate, thus, that IGFs regulate Rb phosphorylation and cyclin D1 and cyclin-dependent kinase 4 gene expression; together with their biphasic effects on myogenin expression, these results suggest a mechanism by which IGFs are initially mitogenic and subsequently differentiation-promoting in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kindling, an animal model of epilepsy wherein seizures are induced by subcortical electrical stimulation, results in the upregulation of neurotrophin mRNA and protein in the adult rat forebrain and causes mossy fiber sprouting in the hippocampus. Intraventricular infusion of a synthetic peptide mimic of a nerve growth factor domain that interferes with the binding of neurotrophins to their receptors resulted in significant retardation of kindling and inhibition of mossy fiber sprouting. These findings suggest a critical role for neurotrophins in both kindling and kindling-induced synaptic reorganization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the cardioprotective effects of insulin-like growth factor I (IGF-I) were examined in a murine model of myocardial ischemia reperfusion (i.e., 20 min + 24 hr). IGF-I (1-10 micrograms per rat) administered 1 hr prior to ischemia significantly attenuated myocardial injury (i.e., creatine kinase loss) compared to vehicle (P < 0.001). In addition, cardiac myeloperoxidase activity, an index of neutrophil accumulation, in the ischemic area was significantly attenuated by IGF-I (P < 0.001). This protective effect of IGF-I was not observed with des-(1-3)-IGF-I. Immunohistochemical analysis of ischemic-reperfused myocardial tissue demonstrated markedly increased DNA fragmentation due to programmed cell death (i.e., apoptosis) compared to nonischemic myocardium. Furthermore, IGF-I significantly attenuated the incidence of myocyte apoptosis after myocardial ischemia and reperfusion. Therefore, IGF-I appears to be an effective agent for preserving ischemic myocardium from reperfusion injury and protects via two different mechanisms--inhibition of polymorphonuclear leukocyte-induced cardiac necrosis and inhibition of reperfusion-induced apoptosis of cardiac myocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tobacco plants were transformed with a cDNA clone of chymotrypsin/trypsin-specific potato proteinase inhibitor II (PI2) under the control of a constitutive promoter. Although considerable levels of transgene expression could be demonstrated, the growth of Spodoptera exigua larvae fed with detached leaves of PI2-expressing plants was not affected. Analysis of the composition of tryptic gut activity demonstrated that only 18% of the proteinase activity of insects reared on these transgenic plants was sensitive to inhibition by PI2, whereas 78% was sensitive in insects reared on control plants. Larvae had compensated for this loss of tryptic activity by a 2.5-fold induction of new activity that was insensitive to inhibition by PI2. PI2-insensitive proteolytic activity was also induced in response to endogenous proteinase inhibitors of tobacco; therefore, induction of such proteinase activity may represent the mechanism by which insects that feed on plants overcome plant proteinase inhibitor defense.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During tumor progression, variants may arise that grow more vigorously. The fate of such variants depends upon the balance between aggressiveness of the variant and the strength of the host immunity. Although enhancing host immunity to cancer is a logical objective, eliminating host factors necessary for aggressive growth of the variant should also be considered. The present study illustrates this concept in the model of a spontaneously occurring, progressively growing variant of an ultraviolet light-induced tumor. The variant produces chemotactic factors that attract host leukocytes and is stimulated in vitro by defined growth factors that can be produced or induced by leukocytes. This study also shows that CD8+ T-cell immunity reduces the rate of tumor growth; however, the variant continues to grow and kills the host. Treatment with a monoclonal anti-granulocyte antibody that counteracts the infiltration of the tumor cell inoculum by non-T-cell leukocytes did not interfere with the CD8+ T-cell-mediated immune response but resulted in rejection of the tumor challenge, indicating a synergy between CD8+ T-cell-mediated immunity and the inhibition of paracrine stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p16ink4 has been implicated as a tumor suppressor that is lost from a variety of human tumors and human cell lines. p16ink4 specifically binds and inhibits the cyclin-dependent kinases 4 and 6. In vitro, these kinases can phosphorylate the product of the retinoblastoma tumor suppressor gene. Thus, p16ink4 could exert its function as tumor suppressor through inhibition of phosphorylation and functional inactivation of the retinoblastoma protein. Here we show that overexpression of p16ink4 in certain cell types will lead to an arrest in the G1 phase of the cell cycle. In addition, we show that p16ink4 can only suppress the growth of human cells that contain functional pRB. Moreover, we have compared the effect of p16ink4 expression on embryo fibroblasts from wild-type and RB homozygous mutant mice. Wild-type embryo fibroblasts are inhibited by p16ink4, whereas the RB nullizygous fibroblasts are not. These data not only show that the presence of pRB is crucial for growth suppression by p16ink4 but also indicate that the pRB is the critical target acted upon by cyclin D-dependent kinases in the G1 phase of the cell cycle.