926 resultados para Groundwater.
Resumo:
The distribution in outcrop of carbonate rocks in China is about 3.44×106km2 and accounts for over one third of the total area of the country, mainly in the Yangtze valley and the Yungui tableland ,and there is a great plenty of Water and hydropower resources in these carbonate area. A large number of projects will be built in order to develop the Water and hydropower resources. They are facing amount of complicated problems of karsts, specially the problem of the depths of karsts below water, which is a key problem that hasn’t been solved well theoretically. So, systematically research in quantitative analysis of the problem is necessary, which is very important to solve the inconsistency between current theories and facts, and is helped to foresee the depth of karsts below water and decrease the expense of the engineering. For the problem mentioned above, the thesis makes a detailed research on the length of corrosion of karsts water, based on the kinetics of corrosion, and founds the primary theory about the processes of four typical geologic elements, which are single fracture, single conduit, porous limestone and fractured limestone. And it has done a deep research upon the characterties and kinetics of corrosion of the four typical geologic elements by simulation using the programme edited by the author. The thesis also makes a discussion on the general model and process of the form of caves by using the founded theory. According to the characteristic of Water Resource and Hydropower engineering, the thesis creates three representative flow-dissolution models for three types of common geologic conditions under the induction of the theory kinetics of corrosion of karsts water. It has done quantitative research upon the process of dissolution and brought out primary theory about quantitative analysis of the depth of karsts below water as well. It found that the depth of karsts below water relates to the specific geologic conditions and the time of dissolution by simulation based on typical parameters and deep analysis of the result. That is to say there are karsts caves in any depths in flow areas of groundwater in specific geologic conditions and appropriate time. The thesis also discourses three basic problems that frequently encountered in the reconnaissance of Water Resource and Hydropower engineering, which are karsts base level, essential conditions of karsts, the comparability of caves and terrace, and indicates the importance of time in karsts. Finally, as an application, the karsts of the scheming Qianzhong water resource engineering is analyzed by the primary theory founded of quantitative analysis. The result of the application comes to a conclusion that the theory accords with the facts properly.
Resumo:
Based on field survey, laboratory testing and numerical modeling, engineering characteristics of undisturbed loess and the mechanism of long-runout loess landslides caused by underground water level rise, as well as the formation conditions and spatial distribution of landslides, are systematically studied and analyzed. Loess landslides at south Plateau of Jingyang County are mainly classified as flowslide, slide and fall. Flowslide is the main type characteristic of high velocity, long runout and multi-stages. The steep relief composed of loose structured loess-old aged soil serials and the rise of groundwater table are the predominant conditions for landslides in the study area. To study loess mechanic poperties and loess landslides mechanisims, isotropically and anisotropically consolidated undrained compression(ICU and ACU) tests and constant-deviator-drained compression (CQD) tests were carried out on undisturbed samples. The results of undrained compression tests performed at the in-situ stress level show that the soils are of consistently strain-softening in the stress-strain relations and cause high excess pore pressure. The steady-state line and the potential region of instability are obtained from ICU and ACU test results. A necessary condition for liquefaction is that the soil state initially lies in or is brought into the potential instability region. In addition, a strong strain-softening model is also formed. CQD tests demonstrate that the mobilized friction angle is far less than the steady-state angle and that the soil experiences undrained contractive failure suddenly at very small strains when its stress path during drained loading tries to cross the potential instability region,thus validates the proposed instability region. Based on the location of the region of potential instability and the stress state of slope soil, a method of static liquefaction analysis is proposed for loess landslides caused by rise in groundwater table. Compared with other liquefaction analysis methods, this method overcomes the limitations inherent in conventional slope stability method and undrained brittleness index method. Triaxial tests composed of constant water content (CW) and wetting tests at constant deviator stress are performed on undisturbed unsaturated samples. The stress-strain relation of CW tests takes on strain-hardening behavior; The results of wetting tests at constant deviator stress designed to study the mechanics of failure of unsaturated loess caused by an increase in the degree of saturation (wetting) shows that a contractive failure occurs in the undisturbed samples. On the basis of the above triaxial test results, the initiation of static liquefaction is presented for long-runout loess landslides caused by rise in groundwater table, that is, the loess slope soil gradually transfer from unsaturated to saturated state under the infiltration of irrigation. A contractive failure occurs in the local region at very small strain by increasing the pore-water pressure at constant deviator stresses under drained conditons. It is the contractive failrue resulting from rise of pore pressure that leads to high excess pore pressure in the neighbour soil which reduces shear resistance of soil. The neighbour soils also fail due to the rapid increase in pore-water pressure. Thus a connected failure surface is developed quickly and a flowslide occurs. Based on the saturated-unsaturated seepage theory, transient seepage is computed using the finite element method on loess slope under groundwater table rise. Pore-water pressure distribution for every time step after irrigation are obtained. The phreatic surface in the slope increases with the groundwater table. Pore-water pressure distribution within 8m above the phreatic surface changes very quickly,but the water content and pore water pressure in the region ranging from 8m above the phreatic surface up to ground surface is almost not affected and the matric suction usually is kept at 100~120 kPa. Based on the results of laboratory tests and seepage flow analysis, the development process of loess landslide is modeled considering groundwater table rise. The shearing plastic zone first occurs at the slope toe where the soil is soaked for long term during rise in groundwater table. As irrigation continues, the shearing plastic zone gradually extends to the interior soils, with the results that the tensile plastic zone occurs at the slope crown. As time goes on, both the shearing plastic zone and tensile plastic zone continue to extend. Then a connected plastic zone is formed and fowslide occurs. In comparision to laboratory test results, the results of numerical simulation quite well verify the presented mechanism of static liquefaction of long-runout loess landslides caused by rise in groundwater table.
Resumo:
Debris Landslide is one of the types of landslides with the widest distribution, largest quantity, and the closest relationship with engineering construction. It is also one of the most important types of landslides that can cause disaster. This kind of landslide often occurs in the loose slopes which are made up of loose congeries formed by earth filling, residual soil, slope wash, dilapidation, landslide or full weathered material of hard rock. Rainfall is always the chief inducing factor of debris Landslide. Therefore, to research stability of debris Landslide during rainfall not only has important theoretical significance for understanding developing law and deformation and failure mechanism of debris landslide, but also has important practical significance for investigating, appraising, forecasting, preventing and controlling debris landslides. This thesis systematically summarized the relationships between rainfall and landslide, the method to survey water table in the landslides, the deformation and failure mechanism of debris landslide, and the progress in the stability analysis of landslides based on the analyses of data collected widely at home and abroad. The problems in the study of the stability of debris landslide during rainfall was reviewed and discussed. Due to the complicated geological conditions and the random rainfall conditions, the research on the landslides' stability must be based on engineering geological qualitative analysis. Through the collection of the data about the Panxi region and the Three Gorges Reservoir region, the author systematically summarized the engineering geological conditions, hydro-geological condition, distribution characteristics of stress field in the slope, physical and mechanical properties and hydro-mechanical properties of debris. In the viewpoint of dynamics of soil water and hydromechanics, physical process of rainfall to supply groundwater of debris landslides can be divided into two phases, i.e. non-saturated steady infiltrating phase and saturated unsteady supplying phase. The former can be described by mathematical model of surface water infiltration while the latter can be described by equivalent continuous medium model of groundwater seepage. With regard to specific hydrological geology system, we can obtain the dynamic variation law of water content, water table, landslide stability of rock and soil mass, along with quantity and duration of rainfall after the boundary condition on hydrological geology has been ascertained. This is a new way to study the response law of groundwater in the landslides during rainfall. After wet face of rock and soil mass connects with ground water table, the raising of water table will occur due to the supply of rainfall. Then interaction between ground water and rock and soil mass will occur, such as the action of physics, water, chemistry and mechanics, which caused the decrease of shearing strength of sliding zone. According to the action of groundwater on rock and soil mass, a concise mechanical model of debris landslide’s deformation was established during rainfall. The static equilibrium condition of landslide mass system was achieved according to the concise mechanical model, and then the typical deformation and failure process and failure mode of debris landslide during rainfall were discussed. In this thesis, the former limiting equilibrium slice method was modified and improved based on shearing strength theory of , a stability analysis program of debris landslide was established and developed taking account of the saturated-unsaturated seepage, by introducing the shearing strength theory of unsaturated soil mass made by (1978). The program has reasonable data storage and simple interface and is easy to operate, and can be perfectly used to carry out sensitivity analysis of influencing factors of landslides' stability, integrated with the program of Office Excel. The design of drainage engineering are always bases on empirical methods and is short of effective quantitative analysis and appraise, therefore, the conception of critical water table of debris landslide was put forward. For debris landslides with different kinds of slide face in the engineering practice, a program to search the critical water table of debris landslide was developed based on native groundwater table. And groundwater table in the slope should be declined below the critical water table in the drainage works, so the program can be directly used to guide drainage works in the debris landslide. Taking the slope deformation body in the back of former factory building of Muli Shawan hydroelectric power station as an example, a systematic and detailed research on debris landslides' stability during rainfall was researched systematically, the relationship among quantity of rainfall, water table and stability of slope was established, the debris landslides' stability in process of rainfall from dynamic viewpoint was analyzed and researched.
Resumo:
This thesis bases on horizontal research project “The research about the fine structure and mechanical parameters of abutment jointed rock mass of high arch dam on Jinping Ⅰ Hydropower Station, Yalong River” and “The research about the fine structure and mechanical parameters of the columnar basalt rock mass on Baihetan Hydropower Station, Jinsha River”. A rounded system about the fine structure description and rock mass classification is established. This research mainly contains six aspects as follow: (1) Methods about fine structure description of the window rock mass; (2) The window rock mass classification about the fine structure; (3) Model test study of intermittent joints; (4) Window rock mass strength theory; (5) Numerical experimentations about window rock mass; (6) The multi-source fusion of mechanical parameters based on Bayes principle. Variation of intact rock strength and joint conditions with the weathering and relaxation degree is studied through the description of window rock mass. And four principal parameters: intact rock point load strength, integration degree of window rock mass, joint conditions, and groundwater condition is selected to assess the window rock mass. Window rock mass is classified into three types using the results of window rock mass fine structure description combined with joints develop model. Scores about intact rock strength, integrality condition, divisional plane condition and groundwater conditions are given based on window rock mass fine structure description. Then quality evaluation about two different types of rock mass: general joint structure and columnar jointing structure are carried out to use this window rock mass classification system. Application results show that the window rock mass classification system is effective and applicable. Aimed at structural features of window structure of “the rock mass damaged by recessive fracture”, model tests and numerical models are designed about intermittent joints. By conducting model tests we get shear strength under different normal stress in integrated samples, through samples and intermittent joints samples. Also, the changing trends of shear strength in various connectivity rates are analyzed. We numerically simulate the entire process of direct shear tests by using PFC2D. In order to tally the stress-strain curve of numerical simulation with experimental tests about both integrated samples and through samples, we adjust mechanical factors between particles. Through adopting the same particle geometric parameter, the numerical sample of intermittent joints in different connective condition is re-built. At the same time, we endow the rock bridges and joints in testing samples with the fixed particle contacting parameters, and conduct a series of direct shear tests. Then the destructive process and mechanical parameters in both micro-prospective and macro-prospective are obtained. By synthesizing the results of numerical and sample tests and analyzing the evolutionary changes of stress and strain on intermittent joints plane, we conclude that the centralization of compressive stress on rock bridges increase the shear strength of it. We discuss the destructive mechanics of intermittent joints rock under direct shear condition, meanwhile, divide the whole shear process into five phases, which are elasticity phase, fracture initiation phase, peak value phase, after-peak phase and residual phase. In development of strength theory, the shear strength mechanisms of joint and rock bridge are analyzed respectively. In order to apply the deducted formulation conveniently in the real projects, a relationship between these formulations and Mohr-Coulomb hypothesis is built up. Some sets of numerical simulation methods, i.e. the distinct element method (UDEC) based on in-situ geology mapping are developed and introduced. The working methods about determining mechanical parameters of intact rock and joints in numerical model are studied. The operation process and analysis results are demonstrated detailed from the research on parameters of rock mass based on numerical test in the Jinping Ⅰ Hydropower Station and Baihetan Hydropower Station. By comparison,the advantages and disadvantages are discussed. Results about numerical simulation study show that we can get the shear strength mechanical parameters by changing the load conditions. The multi-source rock mass mechanical parameters can be fused by the Bayes theory, which are test value, empirical value and theoretical value. Then the value range and its confidence probability of different rock mass grade are induced and these data supports the reliability design.
Resumo:
Groundwater basin is important for water supply in northern China. The paper took the Jingsheng Basin in Lingshi County, Shanxi Province as a case to study the basin groundwater system by numerical modeling. The hydrogeological characteristics were analysed basing on the field investigation, and a three-dimensional groundwater flow model was established to describe the groundwater flow system in the Jingsheng groundwater basin. The boundary of the model was determined by using geophysics and GIS data, and the lumped parameter model of runoff was used to depict the transform between the surface water and groundwater, and the groundwater dating data was used to calibrate the model. All these methods were used to improve the model. The Software Visual MODFLOW 2000 was applied to set up the numerical groundwater flow model. The groundwater flow pattern in the average year, the high-water year and the low-water year were simulated respectively by the model. Some new cognition to the groundwater movement in Jingsheng Basin was obtained in the paper. The difficult problems were resolved when using the conventional and theoretical analysis to forecast and appraise the exploitation of the groundwater, and supplies the instructional technology base for the reasonable exploitation and optimization collocation. The numerical model will improve evaluation of the basin groundwater resources.
Resumo:
The Badain Jaran Desert lies on the Alashan Plateau in western Inner Mongolia. Because of huge dunes, permanent lakes and on the northern fringe of the Asian summer monsoon, the Badain Jaran Desert has been drawing attentions of many experts. And they have made great progress in dune’s geomorphology, botany in desert, paleoclimate change and other study areas. We analyzed environmental isotope and ion chemistry in lakes and groundwater of the desert and southeastern area, and collected some other evidences from 14C dating, fossils and archeology. According to chemical analysis, we discuss the difference spatial character of ion chemistry and environmental isotope in lakes and groundwater of the desert and adjacent. Contrasting with ion chemistry and isotope results in other arid area, we argue origin of groundwater and lakes in the desert area, and get a preliminary understanding of desert lakes’ evolution during Holocene. Some main conclusions were drawn as follows: 1. It has a obvious difference in hydrophysical parameters between lakes and groundwater in the desert and margin. 2. The results of ion analysis show that Na+ and Cl- are dominant in most lakes of the desert. Meanwhile, Na+ 、Cl- and HCO3- are dominant in groundwater of the desert and adjacent, and alsoMg2+、Ca2+、and NO3- have more percentage than in lakes. 3. Owing to different solubilities, the conten of main ions in water varies with the content of TDS. Whereas the content of TDS is over 100 g/L, the content of SO42-、HCO3-、Mg2+and Ca2+ in lakes descend. 4. The result of isotope analyzing indicate the lakes and groundwater in southeast desert have a similar vaporing trend with the groundwater in the southeast margin of the desert. It imply there would have some kind of contact between groundwater in margin and lakes of southeast desert. 5. Contrasting with isotope results of groundwater in other arid area, it show that the groundwater in the desert and Yabulai area should be phreatic water which have a low water table. Therefore, we conclude that the groundwater in southeast part of the desert and southern margin mainly are recharged by precipitation of local abundant rainfall and groundwater of low mountain of southern area. 6. And all of these evidences, which are different from salinity, the content of CO32- and geological data, show that the bigger northern lake group and southeastern lake group in the desert have different groundwater replenishing system because a fold belt lie between of the two group lakes and obstruct them in landform. and HCO3- 7. The 14C dating results of fossil and lacustrine deposits show that there maybe have a wider range of shoreline during early and middle Holocene than today. 8. By the discovery and study of some pieces of pottery and fine stoneware, we preliminary conclude that there maybe have some certain amount of early human activities in the Badain Jaran Desert.
Resumo:
The aim of this study is to increase the precision of groundwater modeling. The way is use the distributed model calculate the mountain basin groundwater lateral discharge and the river runoff. With appropriate technique help, the groundwater model can couple the distributed model results. This paper’s study object is makeing the distributed hydrological model HEC-HMS coupled to the popular groundwater model Visual MODFLOW. The application example is Jiyuan basin which is a typical basin of North China. HEC-HMS can calculate the surface runoff and subsurface runoff at mountain-pass. The subsurface runoff can turn to recharge well straightly. The water level - runoff course and Trial method is used to back analyze the parameters of surface runoff to Visual MODFLOW. So the distributed hydrological model can coupled to the groundwater model. The research proved that base on couple the distributed surface water model the groundwater model’s results are notability improved. The example is Jiyuan basin where use the distributed model coupled to the groundwater model. On the base of the coupled model applied to Jiyuan basin groundwater modeling. The paper estimates the groundwater change in the study area. Then, by use the water resources integrated planning results, the article calculate the basin groundwater can be development and utilization quantity and potential.
Resumo:
Constructing reservoir in mountain area, in order to avoid dangerous reservoir and ensure long-term stable reservoir storage, study on reservoir leakage has been one of research hotspots. How to accurately predict the capacity of leakage and the effect of anti-seepage after reservoir impoundment under different anti-seepage measures is one of the most difficult problems of study on reservoir leakage. The paper took Manghekou Reservoir as a case study, which is located in Jiyuan City, Henan Province, China. Based on the system analysis of the geological and hydrogeological characters in the research area, the hydrogeological conceptual model was established. Then, according to the triplex boundary nested grid model method, using three-dimensional numerical simulation technique, the 3-D groundwater seepage flow numerical model was established in the study area. Based on the model, the change of seepage flow field, the capacity of leakage and the effect of anti-seepage are predicted after Manghekou reservoir impoundment under different condition. The reasonable and reliable anti-seepage measure is selected according to the model. All these provides scientific basis for the design and assessment of anti-seepage measure for the reservoir in mountain area.
Resumo:
The Xinli mine area of Sanshandao mine is adjacent to the Bohai Sea and its main exploitable ore deposit occurs in the undersea rock mass. The mine is the biggest undersea gold mine of China after production. The mine area faces a latent danger of water bursting, even sudden seawater inrush. There is no mature experience in undersea mining in China so far. The vein ore deposit is located in the lower wall of a fault; its possible groundwater sources mainly include bittern, Quaternary pore water and modern seawater. To ensure the safety of undersea mining, to survey the flooding conditions of the ore deposit using proper measures and study the potential seawater inrush pattern are the key technical problems. With the Xinli mine area as a case study, the engineering geological conditions of the Xinli mine area are surveyed in situ, the regional structural pattern and rock mass framework characteristics are found out, the distribution of the structural planes are modeled by a Monte Carlo method and the connectivity coefficients of rock mass structural planes are calculated. The regional hydro-geological conditions are analyzed and the in-situ hydro-geological investigation and sampling are performed in detail, the hydrochemistry and isotopes testing and groundwater dynamic monitoring are conducted, the recharge, runoff, discharge conditions are specified and the sources of flooding are distinguished. Some indices are selected from the testing results to calculate the proportion of each source in some water discharge points and in the whole water discharge of the Xinli mine area. The temporal and spatial variations of each water source of the whole ore deposit flooding are analyzed. According to the special project conditions in the Xinli mine area, the permeability coefficient tensors of the rock mass in Xinli mine area are calculated based on a fracture geometry measurement method, in terms of the connectivity and a few hydraulic testing results, a modified synthetic permeability coefficient are calculated. The hydro-geological conceptual and mathematical model are established,the water yield of mine is predicted using Visual Modflow code. The spreading law of surrounding rock mass deformation and secondary stress are studied by numerical analysis; the intrinsic mechanism of the faults slip caused by the excavation of ore deposit is analyzed. The results show that the development of surrounding rock mass deformation and secondary stress of vein ore deposit in the lower wall of a fault, is different from that in a thick-big ore deposit. The secondary stress caused by the excavation of vein ore deposit in the lower wall of a fault, is mainly distributed in the upper wall of the fault, one surface subsidence center will occur. The influences of fault on the rock mass movement, secondary stress and hydro-geological structures are analyzed; the secondary stress is blocked by the fault and the tensile stress concentration occurs in the rock mass near the fault, the original water blocking structure is destructed and the permeable structure is reconstructed, the primary structural planes begin to expand and newborn fissures occur, so the permeability of the original permeable structure is greatly enhanced, so the water bursting will probably occur. Based on this knowledge, the possible water inrush pattern and position of the Xinli mine area are predicted. Some computer programs are developed using object-oriented design method under the development platform Visual Studio.Net. These programs include a Monte Carlo simulation procedure, a joint diagrammatizing procedure, a structural planes connectivity coefficient calculating procedure, a permeability tensor calculating procedure, a water chemical formula edit and water source fixture conditions calculating procedure. A new computer mapping algorithm of joint iso-density diagram is raised. Based on the powerful spatial data management and icon functions of Geographic Information System, the pit water discharge dynamic monitoring data management information systems are established with ArcView.
Resumo:
The formation and evolution of magedunes and lakes in Badain Jaran desert is focused by scholars for a long time. In this paper, detailed investigation was made with the Remote Sensing, Geographic Information Systems, climatological data of research region to study the evolution of magedunes, vegetation and lakes. The main conclusions are presented as follows: (1) The magedunes are mainly located in south and northeast of the desert. The density of magedunes decreases from south to north, east to west, and greatest in southeast of the desert. Most of magedunes strike NE30°~60°, and which are NE-SW and NNE-SSW directions. The distribution of magedunes’ strikes indicates that the paleowind of the desert is northwest and west wind. (2) The vegetation cover is low in the Badain Jaran Desert, but there are some well-vegetated areas in the desert, and the value of NDVI is 0.6107. In southeast of the desert, the vegetation degradated seriously from 1987 to 2000. (3) At about 2000, the total area of permanent lakes was 2231.64 hm2 (±5.9%) in southeast of Badain Jaran Desert. From 1960 to about 2000, the lakes changed as followings: in the early 30 years, the area of lakes increased, but after 1990 it decreased. When lakes were large, the toral area of lakes is 20648 hm2 in Badain Jaran Desert, much larger than that of present lakes. (4) From 1961 to 2001, the mean annual evaporation of lakes was 1039.8mm (±10%) in Badain Jaran Desert, and the difference between years was large. The monthly evaporation of lakes was mainly affected by rainfall, temperature. And it was largest in June, 140.9mm(±10%). (5) Based on water balance calculation of present lakes and old lakes in southeast of Badain Jaran Desert, the total precipitation is more than the total evaporation in this area. So it is probable that the precipitation in the lake area supplies water to the lakes, and also to groundwater in west and north part of the desert.
Resumo:
Geothermal resource is rich in Guanzhong Basin, but as to its cycle characteristic, there has been lack of systematic study so far. Blind exploitations lead to water-temperature reducing, the decrease of spring flow rate and so on. Based on groundwater system and hydrogeological and hydrological geochemical theory, this paper studied the recycling type of geothermal water and analyzed the resources of dissolved inorganic carbon (DIC) and sulfate. The origin of the internal geothermal water is ice and snow in Qinling Mountain and Liupan Mountain above 1400m. The precipitation and surface water entered the deep part of the basin along piedmont faults, heated and water-expansion increased. The karst groundwater comes from meteoric water of the bare carbonate rock area in the North Mountains. Geothermal-water DIC mainly came from the dissolution of carbonate rock in the deep part of Guanzhong Basin, sulfate of Xi’an depression and Lishan salient came from the dissolution of continental evaporate , and sulfate of Gushi depression and Xianli salient came from co-dissolution of continental and marine evaporate. The above results supply science basis for reasonable exploitation and sustainable utilization of the geothermal water in Guanzhong Basin.
Resumo:
A full understanding of failure mechanism, critical hydrological condition, and process of mobilization and deposition of a landslide is essential for optimal design of stabilization measure and forecasting of landslide hazard. This requires a quantitative study of hydrological response of a slope to rainfall through field monitoring, laboratory test and numerical modelling. At 13:40 on September 18, 2002, a fill slope failed following a period of prolonged rain in Shenzhen, resulting in 5 fatalities and 31 injuries. The failed mass with a volume about 2.5×104m3 traveled about 140m on level ground. Field monitoring, laboratory test, theoretical analysis and numerical modelling were carried out to undestand the hydrological response and failure mechanism of this fill slope. This thesis mainly focuses on the following aspects: (1) The hydrological responses and failure processes of slopes under rainfall infiltration were reviewed. Firstly, the factors influencing on the hydrological responses of slopes were analysed. Secondly, the change of stress state of slope soil and modelling methods of slope failure under rainfall infiltration were reviewed. (2) The characteristics of the Yangbaodi landslide and associated rainfall triggering the failure were presented. The failure was characterized by shallow flowslide, due to an increase of ground water table caused by rainfall infiltration. (3) A fully automated instrumentation was carried out to monitor rainfall, and saturated – unsaturated hydrological response of the fill slope, using a raingauge, piezometers, tensiometers and moisture probes. A conceptual hydrogeological model was presented based on field monitoring and borehole data. Analysis of monitoring data showed that the high pore water pressure in fill slope was caused by upward flow of semiconfined groundwater in the moderately decomposed granite. (4) Laboratory and in-situ testing was performed to study the physical and mechanical properties of fills. Isotropically consolidated undrained compression tests and anisotropically consolidated constant shear stress tests were carried out to understand the failure mechanism of the fill slope. It is indicated that loosely compacted soil is of strain-softening behaviour under undrained conditions, accompanied with a rapid increase in excess pore water pressure. In anisotropically consolidated constant shear stress tests, a very small axial strain was required to induce the failure and the excess pore water pressure increased quickly at failure. This indicated that static liquefaction caused by rise in groundwater table due to rainfall infiltration occurred. (5) The hydraulic conductivity of the highly and moderately decomposed granite was estimated using monitering data of pore water pressure. A saturated – unsaturated flow was modeled to study the hydrological response of the fill slope using rainfall records. It was observed that the lagged failure was due to the geological conditions and the discrepancy of hydraulic conductivity of slope soils. The hydraulic conductivity of moderately decomposed granite is relatively higher than the other materials, resulting in a semiconfied groundwater flow in the moderately decomposed granite, and subsequent upward flow into the upper fill layer. When the ground water table in the fill layer was increased to the critical state, the fill slope failed. (6) Numerical exercises were conducted to replay the failure process of the fill slope, based on field monitoring, laboratory and in-situ testing. It was found that the fill slope was mobilized by a rapid transfer of the concentrated shear stress. The movement of failure mass was characterized by viscosity fluid with a gradual increase in velocity. The failure process, including mobilization and subsequent movement and deposition, was studied using numerical methods.
Resumo:
Numerical modeling of groundwater is very important for understanding groundwater flow and solving hydrogeological problem. Today, groundwater studies require massive model cells and high calculation accuracy, which are beyond single-CPU computer’s capabilities. With the development of high performance parallel computing technologies, application of parallel computing method on numerical modeling of groundwater flow becomes necessary and important. Using parallel computing can improve the ability to resolve various hydro-geological and environmental problems. In this study, parallel computing method on two main types of modern parallel computer architecture, shared memory parallel systems and distributed shared memory parallel systems, are discussed. OpenMP and MPI (PETSc) are both used to parallelize the most widely used groundwater simulator, MODFLOW. Two parallel solvers, P-PCG and P-MODFLOW, were developed for MODFLOW. The parallelized MODFLOW was used to simulate regional groundwater flow in Beishan, Gansu Province, which is a potential high-level radioactive waste geological disposal area in China. 1. The OpenMP programming paradigm was used to parallelize the PCG (preconditioned conjugate-gradient method) solver, which is one of the main solver for MODFLOW. The parallel PCG solver, P-PCG, is verified using an 8-processor computer. Both the impact of compilers and different model domain sizes were considered in the numerical experiments. The largest test model has 1000 columns, 1000 rows and 1000 layers. Based on the timing results, execution times using the P-PCG solver are typically about 1.40 to 5.31 times faster than those using the serial one. In addition, the simulation results are the exact same as the original PCG solver, because the majority of serial codes were not changed. It is worth noting that this parallelizing approach reduces cost in terms of software maintenance because only a single source PCG solver code needs to be maintained in the MODFLOW source tree. 2. P-MODFLOW, a domain decomposition–based model implemented in a parallel computing environment is developed, which allows efficient simulation of a regional-scale groundwater flow. The basic approach partitions a large model domain into any number of sub-domains. Parallel processors are used to solve the model equations within each sub-domain. The use of domain decomposition method to achieve the MODFLOW program distributed shared memory parallel computing system will process the application of MODFLOW be extended to the fleet of the most popular systems, so that a large-scale simulation could take full advantage of hundreds or even thousands parallel processors. P-MODFLOW has a good parallel performance, with the maximum speedup of 18.32 (14 processors). Super linear speedups have been achieved in the parallel tests, indicating the efficiency and scalability of the code. Parallel program design, load balancing and full use of the PETSc were considered to achieve a highly efficient parallel program. 3. The characterization of regional ground water flow system is very important for high-level radioactive waste geological disposal. The Beishan area, located in northwestern Gansu Province, China, is selected as a potential site for disposal repository. The area includes about 80000 km2 and has complicated hydrogeological conditions, which greatly increase the computational effort of regional ground water flow models. In order to reduce computing time, parallel computing scheme was applied to regional ground water flow modeling. Models with over 10 million cells were used to simulate how the faults and different recharge conditions impact regional ground water flow pattern. The results of this study provide regional ground water flow information for the site characterization of the potential high-level radioactive waste disposal.
Resumo:
Slide-debris flow is debris flow which is transformed from landslide consecutively in a short time, it comprises of two phases: First, Landslide starts to slide; Second, landslide changes to debris flow. Slide-debris flow which brings great property and life loss happens frequently at home and abroad. In order to forecast the happening possibility and scope of slide-debris flow, transfromation mechanism of Slide-debris flow must be studied. Research on transformation mechanism of slide-debris flow is intersectant science of landslide kinetics and debris flow starting theory, It is a fringe problem as well as front problem of geological hazard. This paper takes Qingning slide-debris flow in Da County, Sichuan Province for example and has studied the mechanism of its instability and transfromation into debris flow through indoor test (including usual soil test and ring shear test) and digital modeling method.The research gets the following conclusions. Qingning Landslide took place mainly because of confined water head arising from rainfall infiltration. Before Landslide occurring, it rained continuously for 22 days, accumulated precipitation arrived at 521.6mm.Investigation shows that strata of Qingning Landslide contains quaternary loose accumulation, slip soil and highly weathered bedrock, which is a good condition for formation of confined water in the slope. Further more, groundwater seepage in the slope body and corresponding slope safety factor before landslide occurring have been computed through finite element method. The result shows that because of infiltration of rainfall, confined water head in the slope arose sharply, accordingly, the safety factor of the slope declined quickly. The result also shows that force put on the slide body by the rock mass detached from Dazhaiyan mountain was the direct factor for landslide occurring. Qingning slide-debris transformation mode has been summarized, the process the landslide changed into debris flow is divided into three phases in the prospective of macroscopic geological condition: landslide occurring, transformation and debris flow. Landslide occurring phase is from slope’ local creeping slide to Landslide occurring; transformation phase contains slide body sliding on the slide bed after slide occurring and sliding on the slope after shearing opening; debris flow phase is that slide body breaks up completely and flows downward into the ditches. The transformation mechanism of Qingning slide-debris flow has been studied through indoor ring shear test of slip soil. The result shows that transformation mechanism contains two points: first, during slide body sliding on the slide bed and slope after shearing opening, shearing shrinkage, grain crushing and grain layering brought about declining of its volume and produced excess pore water pressure, and because producing velocity of excess pore water pressure is much greater than its dissipating velocity, shear strength of slide body decreased sharply because of accumulated pore water pressure. Second, grains crushing and grains layering during slide body sliding brought about thick liquefied layer at the bottom of the slidebody, liquefied layer contained high water content and its shear strength was very low, its thickness increased as the sliding displacement increasing. Liquefied layer makes slide body sliding fast and easily break down to debris flow. Excess pore water pressure and liquefied layer made shear strength of slidebody became very low, furthermore, water in the pit of slope joining in the slidebody was also a facter that made slidebody accelerate the transformation. Influence of slide body thickness and fine grains content to transformation of slide-debris flow has been studied through ring shear test. The result reaches two conclusions. First, thickness of slide body affects transformation of slide-debris flow by two ways, porewater pressure and effect of “soft base” increases as thickness of slide body increasing.so the thicker slide body is ,the easier transformation is. Second, actual dissipating velocity of porewater pressure should be considered when studying the influence of fine grains content to tranformation of slide-debris flow. There should be a critical content of fine grains which makes the difference of producing and dissipating velocity of water pore pressre greatest, this value is the best for slide-debris transformation. The whole process of slide-debris flow transformation is reproduced through discrete element method. Transformation mechanism of slide-debris flow is studied through monitoring various parameters including pore water pressure, grain crushing and grain layering in the slide body during the transformation. The result confirms and supplements the transformation mechanism of slide-debris flow got from ring shear test well.
Resumo:
Hydrochemistry, isotope and CFCs were used to determine groundwater transport in the eastern part of the Guanzhong Basin. In this paper, we systematically collected water samples and measured major ions, 2H-18O and CFCs in surface water and shallow groundwater. Groundwater in this region can be divided into three categories based on total dissolved solids (TDS): fresh water with TDS < 1g/L, brackish water with TDS between 1~3g/L, and saline water with TDS > 3g/L. Saline water is mainly located in the north of the Wei River, and saline groundwater is not in the south. Tributaries in the south of the Wei River and underlain groundwater had similar 2H-18O values, indicating a close hydraulic connection between them. Tributaries in the north of the Wei River characterized certain extent of evaporation, and 2H-18O values deviated to a differing extent between surface water and groundwater, indicating that surface water in the north bank of the Wei River has little hydraulic connection with underlain groundwater. The CFCs age of groundwater from the piedmont recharge area was young, and became older toward the Wei River valley. Vertically, the CFCs age of groundwater increased with well depth. The shallow groundwater is mainly composed of young water with ages < 60 years and old water with ages > 60 years. Young water is in a larger proportion. The NO3-N concentration positively correlates with the CFC-12 concentration in the groundwater, which indicates that young water is subjected to be contaminated. Keyword: Guanzhong Basin , shallow groundwater, isotope, CFC