972 resultados para Gravity and Quantization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study and look for similarities between the response rates R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) of a static scalar source with constant proper acceleration a(0) interacting with a massless, conformally coupled Klein-Gordon field (i) in de Sitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation emanating from the de Sitter cosmological horizon and (ii) in Schwarzschild-de Sitter spacetime, in the Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the cosmological horizons, respectively, where Lambda is the cosmological constant and M is the black hole mass. After performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum numbers. In the case of de Sitter spacetime, this formula is worked out and a closed, analytical form is obtained. In the case of Schwarzschild-de Sitter spacetime such a closed formula could not be obtained, and a numerical analysis is performed. We conclude, in particular, that R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) do not coincide in general, but tend to each other when Lambda-->0 or a(0)-->infinity. Our results are also contrasted and shown to agree (in the proper limits) with related ones in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general-case, gravitation is not dual symmetric, there is a particular theory in which this symmetry shows up. It is a self dual (or anti-self dual) teleparallel gravity in which, due to the fact that it does not contribute to the interaction of fermions with gravitation, the purely tensor part of torsion is assumed to vanish. The ensuing fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory may eventually be more amenable to renormalization than telepaxallel gravity or general relativity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher-derivative gravity in 2 + 1 dimensions is considered. The general solution of the linearized field equations in a three-dimensional version of the Teyssandier gauge is obtained, and from that the solution for a static pointlike source is found. The deflection of light rays is also analysed. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the gravitational deflection of massive particles moving with relativistic velocity in the solar system to second post-Newtonian order. For a particle passing close to the Sun with impact parameter b, the deflection in classical general relativity is Phi(C)[GRAPHICS]where v(0) is the particle speed at infinity and M is the Sun's mass. We compute afterwards the gravitational deflection of a spinless neutral particle of mass m in the same static gravitational field as above, treated now as an external field. For a scalar boson with energy E, the deflection in semiclassical general relativity (SGR) is Phisc[GRAPHICS]This result shows that the propagation of the =2E spinless massive boson produces inexorably dispersive effects. It also shows that the semiclassical prediction is always greater than the geometrical one, no matter what the boson mass is. In addition, it is found that SGR predicts a deflection angle of similar to2.6 arcsec for a nonrelativistic spinless massive boson passing at the Sun's limb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using a nonholonomic moving frame version of the general covariance principle, an active version of the equivalence principle, an analysis of the gravitational coupling prescription of teleparallel gravity is made. It is shown that the coupling prescription determined by this principle is always equivalent with the corresponding prescription of general relativity, even in the presence of fermions. An application to the case of a Dirac spinor is made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using a nonholonomous-frame formulation of the general covariance principle, seen as an active version of the strong equivalence principle, an analysis of the gravitational coupling prescription in the presence of curvature and torsion is made. The Coupling prescription implied by this principle is found to be always equivalent to that of general relativity, a result that reinforces the completeness of this theory, as well as the teleparallel point of view according to which torsion does not represent additional degrees of freedom for gravity, but simply an alternative way of representing the gravitational field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of the teleparallel equivalent of general relativity, we obtain the tetrad and the torsion fields of the stationary axisymmetric Kerr spacetime. It is shown that, in the slow rotation and weak-field approximations, the axial-vector torsion plays the role of the gravitomagnetic component of the gravitational field, and is thus responsible for the Lense-Thirring effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An expression for computing the effective non-relativistic potential for higher-derivative gravity in D dimensions is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After reviewing the Green-Schwarz superstring using the approach of Siegel, the superstring is covariantly quantized by constructing a BRST operator from the fermionic constraints and a bosonic pure spinor ghost variable. Physical massless vertex operators are constructed and, for the first time, N-point tree amplitudes are computed in a manifestly ten-dimensional super-Poincare covariant manner. Quantization can be generalized to curved supergravity backgrounds and the vertex operator for fluctuations around AdS(5) x S-5 is explicitly constructed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The teleparallel gravity theory, treated physically as a gauge theory of translations, naturally represents a particular case of the most general gauge-theoretic model based on the general affine group of spacetime. on the other hand, geometrically, the Weitzenbock spacetime of distant parallelism is a particular case of the general metric-affine spacetime manifold. These physical and geometrical facts offer a new approach to teleparallelism. We present a systematic treatment of teleparallel gravity within the framework of the metric-affine theory. The symmetries, conservation laws and the field equations are consistently derived, and the physical consequences are discussed in detail. We demonstrate that the so-called teleparallel GR-equivalent model has a number of attractive features which distinguishes it among the general teleparallel theories, although it has a consistency problem when dealing with spinning matter sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A non-integrable phase-factor global approach to gravitation is developed by using the similarity of teleparallel gravity to electromagnetism. The phase shifts of both the COW and the gravitational Aharonov-Bohm effects are obtained. It is then shown, by considering a simple slit experiment, that in the classical limit the global approach yields the same result as the gravitational Lorentz force equation of teleparallel gravity. It represents, therefore, the quantum mechanical version of the classical description provided by the gravitational Lorentz force equation. As teleparallel gravity can be formulated independently of the equivalence principle, it will consequently require no generalization of this principle at the quantum level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role played by torsion in gravitation is critically reviewed. After a description of the problems and controversies involving the physics of torsion, a comprehensive presentation of the teleparallel equivalent of general relativity is made. According to this theory, curvature and torsion are alternative ways of describing the gravitational field, and consequently related to the same degrees of freedom of gravity. However, more general gravity theories, like for example Einstein-Cartan and gauge theories for the Poincare and the affine groups, consider curvature and torsion as representing independent degrees of freedom. By using an active version of the strong equivalence principle, a possible solution to this conceptual question is reviewed. This solution ultimately favors the teleparallel point of view, and consequently the completeness of general relativity. A discussion of the consequences for gravitation is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conservation laws in gravitational theories with diffeomorphism and local Lorentz symmetry are studied. Main attention is paid to the construction of conserved currents and charges associated with an arbitrary vector field that generates a diffeomorphism on the spacetime. We further generalize previous results for the case of gravitational models described by quasi-invariant Lagrangians, that is, Lagrangians that change by a total derivative under the action of the local Lorentz group. The general formalism is then applied to the teleparallel models, for which the energy and the angular momentum of a Kerr black hole are calculated. The subsequent analysis of the results obtained demonstrates the importance of the choice of the frame.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)