985 resultados para Graph G
Resumo:
http://www.archive.org/details/amodernpioneerin00grifuoft
Resumo:
http://www.archive.org/details/missionspacific00eellrich
Resumo:
http://www.archive.org/details/churchmansprayer00bulluoft
Resumo:
http://www.archive.org/details/johninnocent00canduoft
Resumo:
http://www.archive.org/details/islamandmissions012033mbp
Resumo:
http://www.archive.org/details/kabirandthekabir020544mbp
Resumo:
This collection primarily contains correspondence from Wright’s years as president of ASOR. Material dates as far back as 1957, and proceed into the early 1970’s. Some of Wright’s more notable correspondents include William F. Albright, A. Henry Detweiler, Paul W. Lapp, William Reed, and Dean Seiler. Subject-specific correspondence includes records of expenditures, budget planning, corporate memberships, and the Jerusalem School.
Resumo:
Effective engineering of the Internet is predicated upon a detailed understanding of issues such as the large-scale structure of its underlying physical topology, the manner in which it evolves over time, and the way in which its constituent components contribute to its overall function. Unfortunately, developing a deep understanding of these issues has proven to be a challenging task, since it in turn involves solving difficult problems such as mapping the actual topology, characterizing it, and developing models that capture its emergent behavior. Consequently, even though there are a number of topology models, it is an open question as to how representative the topologies they generate are of the actual Internet. Our goal is to produce a topology generation framework which improves the state of the art and is based on design principles which include representativeness, inclusiveness, and interoperability. Representativeness leads to synthetic topologies that accurately reflect many aspects of the actual Internet topology (e.g. hierarchical structure, degree distribution, etc.). Inclusiveness combines the strengths of as many generation models as possible in a single generation tool. Interoperability provides interfaces to widely-used simulation and visualization applications such as ns and SSF. We call such a tool a universal topology generator. In this paper we discuss the design, implementation and usage of the BRITE universal topology generation tool that we have built. We also describe the BRITE Analysis Engine, BRIANA, which is an independent piece of software designed and built upon BRITE design goals of flexibility and extensibility. The purpose of BRIANA is to act as a repository of analysis routines along with a user–friendly interface that allows its use on different topology formats.
Resumo:
A number of problems in network operations and engineering call for new methods of traffic analysis. While most existing traffic analysis methods are fundamentally temporal, there is a clear need for the analysis of traffic across multiple network links — that is, for spatial traffic analysis. In this paper we give examples of problems that can be addressed via spatial traffic analysis. We then propose a formal approach to spatial traffic analysis based on the wavelet transform. Our approach (graph wavelets) generalizes the traditional wavelet transform so that it can be applied to data elements connected via an arbitrary graph topology. We explore the necessary and desirable properties of this approach and consider some of its possible realizations. We then apply graph wavelets to measurements from an operating network. Our results show that graph wavelets are very useful for our motivating problems; for example, they can be used to form highly summarized views of an entire network's traffic load, to gain insight into a network's global traffic response to a link failure, and to localize the extent of a failure event within the network.
Resumo:
Spectral methods of graph partitioning have been shown to provide a powerful approach to the image segmentation problem. In this paper, we adopt a different approach, based on estimating the isoperimetric constant of an image graph. Our algorithm produces the high quality segmentations and data clustering of spectral methods, but with improved speed and stability.
Resumo:
Temporal structure is skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefronatal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables such as time-to-contact. At a finer scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over- shoot the amounts needed for precise acts. Each context of action may require a different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive patterns of analog signals. From some parts of the cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine design to serve the lowest and highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between leveels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.
Resumo:
Office of Naval Research (N00014-01-1-0624)
Resumo:
Simulation of pedestrian evacuations of smart buildings in emergency is a powerful tool for building analysis, dynamic evacuation planning and real-time response to the evolving state of evacuations. Macroscopic pedestrian models are low-complexity models that are and well suited to algorithmic analysis and planning, but are quite abstract. Microscopic simulation models allow for a high level of simulation detail but can be computationally intensive. By combining micro- and macro- models we can use each to overcome the shortcomings of the other and enable new capability and applications for pedestrian evacuation simulation that would not be possible with either alone. We develop the EvacSim multi-agent pedestrian simulator and procedurally generate macroscopic flow graph models of building space, integrating micro- and macroscopic approaches to simulation of the same emergency space. By “coupling” flow graph parameters to microscopic simulation results, the graph model captures some of the higher detail and fidelity of the complex microscopic simulation model. The coupled flow graph is used for analysis and prediction of the movement of pedestrians in the microscopic simulation, and investigate the performance of dynamic evacuation planning in simulated emergencies using a variety of strategies for allocation of macroscopic evacuation routes to microscopic pedestrian agents. The predictive capability of the coupled flow graph is exploited for the decomposition of microscopic simulation space into multiple future states in a scalable manner. By simulating multiple future states of the emergency in short time frames, this enables sensing strategy based on simulation scenario pattern matching which we show to achieve fast scenario matching, enabling rich, real-time feedback in emergencies in buildings with meagre sensing capabilities.
Resumo:
Go príomha, is tráchtas é seo a dhéanann staidéar ar ghné de litríocht iar-chlasaiceach na Gaeilge. Baineann sé go háirithe leis an sraith chaointe nó marbhnaí i bhfoirm véarsaíochta a cumadh do Shéamas Óg Mac Coitir (1689-1720), duine uasal Caitliceach ó Charraig Tuathail, Co. Chorcaí, nuair a ciontaíodh é in éigniú Elizabeth Squibb, bean de Chumann na gCarad; nuair a cuireadh pionós an bháis air; agus nuair a crochadh é i gCathair Chorcaí an 7 Bealtaine, 1720. Ó thaobh na staire de, scrúdaítear Clann Choitir mar shampla de theaghlach nár cheil a ndílseacht do chúis pholaitiúil na Stíobhartach agus a sheas an fód go cróga faoi mar a bhí a ngreim polaitiúil á dhaingniú ag an gCinsealacht Phrotastúnach ó dheireadh an 17ú haois amach. Tagraítear do sheicteachas na sochaí comhaimseartha agus don teannas idir an pobal Caitliceach agus an pobal Protastúnach ag an am. Déantar scagadh ar an véarsaíocht mar fhoinse luachmhar do dhearcadh míshásta an mhóraimh Chaitlicigh ar struchtúr polaitiúil chontae Chorcaí (agus na hÉireann) i dtosach an 18ú haois. Is feiniméan liteartha an dlús véarsaíochta seo a bhaineann go háirithe le traidisiún liteartha Chorcaí. Tá na dánta curtha in eagar agus aistriúchán go Béarla curtha ar fáil: is é seo croí an tráchtais. Tá an t-eagrán bunaithe ar scrúdú cuimsitheach ar thraidisiún na lsí; pléitear modheolaíocht na heagarthóireachta. Déantar iarracht ar na dánta a shuíomh sa traidisiún casta liteartha sa tráchtaireacht tosaigh; sa chuid eile den bhfearas scoláiriúil, scrúdaítear ceisteanna a bhaineann le cúrsaí teanga, foclóra, meadarachta agus stíle. Tá innéacsanna agus liosta foinsí le fáil i ndeireadh an tráchtais.
Resumo:
Édition d'une étiquette de momie portant un texte en copte.